传统方法:textcnn文本分类中超参数对分类器的影响

引言

众所周知,文本分类是自然语言处理中最常见的任务之一。而TEXTCNN是每一个NLPer入门学习,deeplearning在自然语言处理中应用的首选。相对现在火热得BERT而言,TEXTCNN得结构相对来说更加简单,但其容易被理解,模型更小,训练更快,更易灵活调整得特点,仍然被广泛应用于工业界。现就textCNN使用中的超参数,以及调整超参数的结果做相应的总结。

实验

这里使用的TEXTCNN模型可以参考:中文文本分类项目
使用的数据量:85万+(由于是用专有领域的数据,具有隐私性,所以不便于公布)
**分类的类别:**1497类(样本间的数据分布表现得极为不均衡)
由于存在样本类别不均衡的情况,因此这里采用了Focal loss来作为损失函数来知道模型的训练,不了解FOCAL LOSS的小伙伴可以参考:何凯明老师的focal loss简要描述其工作为:focal loss是以预测类别的置信度的大小来约定item奖惩程度的一种方式。

多分类的FOCAL LOSS代码如下:

class MultiCEFocalLoss(torch.nn.Module):
    def __init__(self, Config, gamma=2, alpha=None, reduction='mean'):
        super(MultiCEFocalLoss, self).__init__()
        if alpha is None:
            self.alpha = Variable(torch.ones(Config.num_classes, 1))
        else:
            self.alpha = alpha
        self.gamma = gamma
        self.reduction = reduction
        self.class_num = Config.num_classes


    def forward(self, predict, target):
        pt = F.softmax(predict, dim=1) # softmmax获取预测概率
        class_mask = F.one_hot(target, self.class_num) #获取target的one hot编码
        ids = target.view(-1, 1)
        alpha = self.alpha[ids.data.view(-1)].cuda() # 注意,这里的alpha是给定的一个list(tensor
#),里面的元素分别是每一个类的权重因子
        probs = (pt * class_mask).sum(1).view(-1, 1) # 利用onehot作为mask,提取对应的pt
        log_p = probs.log()
# 同样,原始ce上增加一个动态权重衰减因子
        loss = -alpha * (torch.pow((1 - probs), self.gamma)) * log_p

        if self.reduction == 'mean':
            loss = loss.mean()
        elif self.reduction == 'sum':
            loss = loss.sum()
        return loss

实验涉及到超参数如下:

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
丢弃神经单元的比例训练时的批大小学习率句子的最大填充长度训练时是否冻结初始向量训练迭代次数

实验结果于结论

为了验证每个超参数对实验结果的影响,这里通过贪心算法的思想+控制变量法来实现:

base实现的超参数设计如下(acc=70.09%):

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.21281e-4118true50

对比实验一(acc=70.69%):

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.51281e-4118true50

结论: 适当的增加drop_out值有助于提升模型效果。

对比实验二:
以实验一的超参数为基准对lr进行调整。

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.51281e-3118true50

以上超参数的到的结果:acc=63.13%

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.51281e-5118true50

以上超参数的到的结果:acc=69.79%

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.51285e-5118true50

以上超参数的到的结果:acc=70.81%

观察可知,lr过大,模型往往很难找到最优点,lr过小模型往往收敛困难。建议: 用少量数据进行多次实验,先现定出lr的最优的取值空间,再取适当的值。

对比实验三:
以实验二的超参数的最优结果为基准对pad_size进行调整。

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.51285e-564true50

以上超参数的到的结果:acc=71.16%
结论: 合理的pad_size可以保留更多有用信息,pad_size过大会填充大量无用信息,pad_size过小会丢失重要信息。这个需要根据实验的语料进行合理的统计和调整。

对比实验四:
以实验三的超参数的最优结果为基准对embedding_freeze进行调整。

drop outbatch_sizelearn ratepad_sizeembedding freezeepoch
0.51285e-564flase50

以上超参数的到的结果:acc=72.21%

结论: 在训练过程中开放预训练词向量的更新,可以有助于提升模型的表达能力。可能你会问,既然如此,那为何不直接为每个词随机生成一个词向量,而言调用预训练好的词向量模型呢,那是因为,预训练好的词向量模型可以有效帮助分类器前期快速收敛。当然如果你的资源特别丰富,又有足够多的时间,也时没有问题的,两种方式都可以,最终都会达到差不多的效果。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱疯头666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值