邓俊辉数据结构 栈实现
学堂在线 栈教学视频
环境:DEV C++5.4.0。有课程资源但是无法运行,于是自己结合视频敲了一边,函数名称尽量与视频中统一,有细微的不同。
栈可以由向量和LIST实现。这里实现了栈的入栈、出栈、查询是否为空、查询顶部函数。
**经典应用 :**括号匹配、进展转换
向量代码
列表实现
1.向量实现栈
这里采用的是聚合方式
#include "vector.hpp"
template <typename T>
class Stack{
private:
Vector<T> stack;
public:
unsigned int size();
bool empty();
void push(T const &e);
T pop();
T top();
};
template <typename T>
unsigned int Stack<T>::size(){
return stack.getSize();
}
template <typename T>
bool Stack<T>::empty(){
return stack.getSize()==0?true:false;
}
template <typename T>
void Stack<T>::push(T const &e){
stack.insert(stack.getSize(),e);
}
template <typename T>
T Stack<T>::pop(){
return stack.remove(stack.getSize()-1);
}
template <typename T>
T Stack<T>::top(){
return stack[stack.getSize()-1];
}
2.向量实现栈采用 继承方式
教学视频中采用的方式,代码比较短
#include "vector.hpp"
template <typename T>
class Stack:public Vector<T>{
public:
void push(T const &e){this->insert(this->getSize(),e);}
T pop(){return this->remove(this->getSize()-1); }
T &top(){return (*this)[this->getSize()-1];//取顶
}
bool empty(){ return this->getSize()==0?true:false;}
};
3.List实现栈
这里只给出继承方式
#include "List.hpp"
template <typename T>
class Stack:public List<T>{
public:
Stack(){this->init();}
void push(T const &e){this->insertBefore(this->first(),e);}
T pop(){return this->remove(this->first());}
T &top(){return this->first()->data;
}
};
测试栈
括号匹配、进制转换
#include <iostream>
#include "Stack.hpp"
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
void convert(Stack<char> &S,__int64 n,int base);
bool patch(char *s,unsigned int n);//括号匹配
int main(int argc, char *argv[]) {
Stack<int> s;
Stack<char> s1;
char *bracket="((()()))()";
long int c=1814231234;
std::cout<<s.empty()<<std::endl;
s.push(c);
s.push(3);
std::cout<<s.pop()<<std::endl;
s.push(7);
s.push(3);
std::cout<<s.top()<<std::endl;
std::cout<<s.empty()<<std::endl;
s.push(11);
std::cout<<s.getSize()<<std::endl;
/*
while(!s.empty()){
std::cout<<s.pop()<<std::endl;
}
std::cout<<"sizeof stack:"<<s.getSize()<<std::endl;//0
std::cout<<"begien controcvers:"<<c<<std::endl;
convert(s1,c,8);
while(!s1.empty()){
std::cout<<s1.pop();
}
std::cout<<"\nsizeof stack:"<<s.getSize()<<std::endl;//0
std::cout<<"begien controcvers:"<<c<<std::endl;
convert(s1,c,16);
while(!s1.empty()){
std::cout<<s1.pop();
}*/
std::cout<<patch(bracket,9);
return 0;
}
//进制转换。base是底数(进制),n是转换的数值,S结果返回的栈。
void convert(Stack<char> &S,__int64 n,int base){
char *digit="0123456789ABCDEF";
do{
S.push(digit[n%base]);
n/=base;
}while(n>0);
}
//括号匹配
bool patch(char *s,unsigned int n){
unsigned int count=0;
unsigned int i=0;
while(i<n){
if(s[i]=='(') count++;
else if(s[i]==')'){
if(count==0)
return false;//不匹配
else
count--;
}
i++;
}
if(count!=0) return false;
else return true;
}
//中缀表达式计算
template <class T>//参数s: 中缀表达式 以\0结尾;目标参数T返回值类型,运算数类型
T evaluat(char *s)
{
Stack<T> num;//操作数
Stack<char> op;//操作符
op.push('\0');//先插入一个结束符,后文判断结束
int i=0;
while(op.empty())//扫描转换
{
if(isdigit(*s))
{
//T n=rednum(s[i]);//多位数,转化为可计算的类型
//num.push(n);
readnum<T>(s,num);
}else //若当前字符为运算符,则视其与栈顶操作符的高低
switch(orderBetween(optr.top(),*s));
}
return opnd.pop();//弹出并返回
}
//判断字符s是否是数字
bool isdigit(char s)
{
return (s<='9' && s>='0');
}
template <class T>
void readnum(char **s,Stack<T> &num)
{
T n;//数字栈
n=(**s)-'0';
*s++;
while(isdigit(**s))
{
n=*10;
n=(**s)-'0';
}
num.push(num);
}
//将一个算式转化为逆波兰表达式 :想法,按照手工的办法,将运算符放大限定它符号的后面,然后去掉所有运算符。
//{([0!]+1)^([(2*[3!])+4]-5)}
template<class T>
T RPN(char *s){
}