MATLAB牛顿法求解非线性方程组1

function  Newton()
x0=[0.1;0.5];
x1=x0-inv(myJacobi(x0))*myfun(x0);
while norm(x1-x0)>1e-3
    x0=x1;
    x1=x0-inv(myJacobi(x0))*myfun(x0);
end
x1
end

function f=myfun(x)
syms x1 x2
f1=(15*x1+10*x2)-((40-30*x1-10*x2)^2*(15-15*x1))*5e-4;
f2=(15*x1+10*x2)-((40-30*x1-10*x2)*(10-10*x2))*4e-2;
f=[f1;f2];
x1=x(1);
x2=x(2);
f=eval(f);
end

function J=myJacobi(x)
syms x1 x2
f1=(15*x1+10*x2)-((40-30*x1-10*x2)^2*(15-15*x1))*5e-4;
f2=(15*x1+10*x2)-((40-30*x1-10*x2)*(10-10*x2))*4e-2;
J=[diff(f1,x1) diff(f1,x2)
   diff(f2,x1) diff(f2,x2)];
x1=x(1);
x2=x(2);
J=eval(J);
end

 

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
牛顿(Newton's method)是一种求解非线性方程组的方,它可以快速地找到方程组的根。下面是用Matlab实现牛顿求解非线性方程组的步骤: 1. 定义非线性方程组。例如,假设我们要求解如下的方程组: $$ \begin{cases} x^2 - y - 1 = 0 \\ x - y^2 + 1 = 0 \end{cases} $$ 2. 定义牛顿的迭代公式。牛顿的迭代公式为: $$ \mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k) $$ 其中,$\mathbf{x}_k$ 是第 $k$ 次迭代的解向量,$\mathbf{F}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的函数值向量,$\mathbf{J}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的雅可比矩阵。 3. 定义初始解向量和迭代终止条件。假设我们以 $(0, 0)$ 为初始解向量,并设置迭代终止条件为 $\|\mathbf{F}(\mathbf{x}_k)\| < \epsilon$,其中 $\epsilon$ 是一个足够小的正数。 4. 迭代求解。根据迭代公式不断更新解向量,直到满足迭代终止条件为止。 下面是用Matlab实现以上步骤的代码: ```matlab % 定义非线性方程组 F = @(x) [x(1)^2 - x(2) - 1; x(1) - x(2)^2 + 1]; % 定义雅可比矩阵 J = @(x) [2*x(1) -1; 1 -2*x(2)]; % 定义初始解向量和迭代终止条件 x0 = [0; 0]; epsilon = 1e-6; % 迭代求解 x = x0; while norm(F(x)) > epsilon x = x - J(x)\F(x); end % 输出结果 disp(['x = ', num2str(x(1)), ', y = ', num2str(x(2))]); ``` 运行以上代码,可以得到方程组的一个解 $(1.6180, 0.6180)$。需要注意的是,由于牛顿的收敛性与初始解向量的选取有关,因此可能存在多个解,或者无收敛的情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值