- 博客(9)
- 资源 (3)
- 收藏
- 关注
原创 剑指offer-重构二叉树(python)
不是完整系列的剑指offer,我想记录的是我自己关于题目的拓展想法。刷题网址:牛客网语言:python(本人平时使用的是python3,但是目前牛客网上大家都是用python2写的,其实差别不大,可以在自己的编译器里简单敲一下就大概知道python2,3的区别了)题目描述输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入...
2019-07-19 17:14:37 287
原创 Keras 模型中使用预训练的词向量(用word2vec替换keras自带的Embedding层)
由于Keras中自带的Embedding层的表现效果不佳,想用word2vec做为预训练模型替换Keras中自带的Embedding层,在此记录下来。本文假设大家已经有了训练好的Word2vec模型,并且简单理解的keras的embeddings层。可以查看中文官方文档了解一下。1.首先要导入预训练的词向量。## 1 导入 预训练的词向量myPath = './CarComment_vor...
2019-07-07 20:43:55 5458 1
原创 隐马尔科夫模型(HMM)
隐马尔可夫模型的权威定义隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐藏的马尔可夫链随机生成的状态序列称为状态序列(state sequence);每个状态生成一个观测,而由此产生的观测的随机序列,称为观测序列(observation sequence),序列的每一个位置又可以看作是一个时刻。(定...
2019-07-03 12:34:30 312
原创 深度学习PPT(入门简介)
背景介绍我在模式识别课上被老师选中,要求在课上给大家讲解深度学习的相关知识。于是上网查了一些资料,模板借鉴了 凌晨点点 博主的一篇博客,在该博主的基础上又补充了一些公式和细节。PPT为自己制作,图片来源于网络(其他博客或文章中)又需要的小伙伴可以在评论区留下邮箱,我看到就会发给你们。...
2019-05-20 11:30:13 22862 581
原创 解决pycharm启动之后一直scanning files to index
第一种方法:点击左上角菜单File —> Invalidate Caches / Restart —> Invalidate and Restart等待自动重启pycharm之后等一会就可以了第二种方法(解决我的问题的方法):1.点击File然后点击settings2.点击右侧下拉菜单,点击Show All3.选中一个(每一个都要重复3,4这两步骤),点击右侧...
2019-05-07 21:03:48 25606 18
原创 解决Pycharm下导入TensorFlow失败的问题
一般情况下通过:File—Settings—Project:工程名字 — Project Interpreter—右上角加号–上面窗口输入Tensorflow—左下角的Install Package就可以成功导入。如果导入失败,可能是你的pip版本不够用了,按照上述方法,先把pip更新一下,在去导入TensorFlow可以了。...
2019-04-29 10:37:51 13961 1
原创 决策树后剪枝——悲观剪枝(PEP)
悲观剪枝(PEP)把一颗子树(具有多个叶子节点)的分类用一个叶子节点来替代的话,误判率肯定是上升的(这是很显然的,同样的样本子集,如果用子树分类可以分成多个类,而用单颗叶子节点来分的话只能分成一个类,多个类肯定要准确一些)。于是我们需要把子树的误判计算加上一个经验性的惩罚因子。对于一颗叶子节点,它覆盖了N个样本,其中有E个错误,那么该叶子节点的错误率为(E+0.5)/N。这个0.5就是惩罚因子...
2019-04-06 10:34:11 5238 9
原创 机器学习实战中的杂知识
numpy.tile(a,(b,c))把矩阵a复制成(b,c)维的矩阵。例:a = [[1,2,3], [4,5,6]] b = numpy.tile(a,(2,1))b = [[1,2,3], [4,5,6], [1,2,3], [4,5,6]]列表/矩阵.sum()>>> from numpy impo...
2019-04-01 10:35:15 166
原创 机器学习-特征选择-VC维的理解
vc维含义的个人理解在看斯坦福机器学习公开课的第10课特征选择中,Andrew Ng老师引入了VC维的概念,可能是字幕翻译不准确的原因,不是很理解,自己在网上查了一些资料,下面说说自己的理解。必要定义:分散(shatter):对于一个给定集合S={x1, … ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S。VC维:H的VC维表示为VC(H) ,指能够...
2019-03-22 17:43:43 3055 4
深度学习简介.pptx
2019-05-20
springboot课程.txt
2019-05-20
ResNet50百度云.txt
2019-05-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人