
什么是 CanMV K230?
CanMV K230是一款高性价比的RISC-V边缘AI平台,凭借低功耗、强视觉处理能力和开放的开发生态,成为嵌入式AI开发的理想选择,尤其适合需要快速部署视觉与AI功能的创客、中小企业及教育场景。CanMV 是一套 AI 视觉开发平台,K230 是其核心芯片。该模块结合了图像采集、AI推理、边缘计算等能力,适合嵌入式视觉应用开发。
CanMV:类似 OpenMV 的图像处理框架,支持 Python 编程,简化视觉识别开发流程。
K230 芯片:嘉楠科技推出的 AIoT SoC,采用 RISC-V 架构,内置第三代 KPU(AI加速单元),算力高达 6 TOPS,性能是 K210 的 13.7 倍。


知识点
巡线任务中,快速线性回归是核心技术,能从摄像头采集的道路标线(如黑色赛道上的白色线段)中,实时拟合出直线方程,为设备(机器人、小车)提供行驶方向指引,核心是 “快速计算 + 抗干扰”。核心结论:巡线场景的快速线性回归,优先用最小二乘法(计算简单、速度快),配合 “感兴趣区域(ROI)提取 + 坐标预处理”,可在毫秒级完成拟合,适配 K230 等边缘设备。
1、核心原理(巡线场景适配版)
巡线的本质是拟合 “标线的中心线”,输入是标线上的像素坐标(x,y),输出是直线方程 y = kx + b(或 ax + by + c = 0),最小二乘法通过最小化 “所有像素到直线的距离平方和”,求解最优参数 k(斜率)和 b(截距)。
2、关键简化(提升速度)
坐标转换:将图像坐标系(原点在左上角,y 向下)转换为 “车辆坐标系”(原点在车辆中心,y 向前),减少后续方向计算的复杂度。
ROI 提取:只处理图像下方的感兴趣区域(如底部 1/3 区域,即车辆前方最近的标线),过滤无关背景像素,减少计算量。
数据筛选:只保留标线上的像素(如白色标线用阈值分割提取,得到二值图中的白色像素坐标),避免杂点干扰。
3、快速实现步骤(巡线专属)
图像预处理:采集图像→灰度化→阈值分割(提取标线)→ROI 裁剪(只留前方区域)→得到标线像素坐标集合 (x1,y1), (x2,y2), …, (xn,yn)。
线性回归计算(最小二乘法核心公式):
计算均值:x_mean = (x1+x2+…+xn)/n,y_mean = (y1+y2+…+yn)/n
计算分子分母:
分子 sum_xy = Σ(xi - x_mean)(yi - y_mean)(协方差和)
分母 sum_xx = Σ(xi - x_mean)²(x 的方差和)
求解参数:k = sum_xy / sum_xx(斜率),b = y_mean - k*x_mean(截距)
方向决策:根据斜率 k 判断标线偏移方向(如 k=0 为直行,k>0 向左偏,k<0 向右偏),输出转向控制信号。
4、巡线场景优化技巧(抗干扰 + 提速度)
数据去噪:
过滤孤立像素:只保留相邻像素数大于 5 的连通区域,剔除单点噪声。
异常值剔除:计算所有像素到初始拟合直线的距离,剔除距离过大的异常点(如超出 3 倍标准差),重新拟合。
速度优化:
减少计算量:ROI 区域设为 320x120(小尺寸),像素数控制在 1 万以内,单帧计算耗时 < 1ms。
硬件加速:在 K230 上,用 NPU 加速阈值分割和 ROI 提取,CPU 只负责回归计算,进一步降低延迟。
鲁棒性增强:
滑动窗口拟合:用最近 3 帧的拟合结果做滑动平均(如 k_final = (k1+2k2+3k3)/6),避免单帧噪声导致的方向突变。
多线段拟合:若标线断裂,分多个 ROI 分别拟合,取主要线段的斜率作为决策依据。
5、实操示例(Python+OpenCV,适配巡线)
python
import cv2
import numpy as np
def fast_linear_regression(points):
"""快速线性回归:输入像素坐标列表,输出k(斜率)、b(截距)"""
x = points[:, 0]
y = points[:, 1]
n = len(x)
if n < 5: # 像素数过少,返回无效值
return 0, 0
# 核心公式计算
x_mean = np.mean(x)
y_mean = np.mean(y)
sum_xy = np.sum((x - x_mean) * (y - y_mean))
sum_xx = np.sum((x - x_mean) ** 2)
if sum_xx < 1e-6: # 避免除以0(近似竖直线)
return 0, y_mean
k = sum_xy / sum_xx
b = y_mean - k * x_mean
return k, b
# 模拟巡线图像(黑色背景+白色标线)
cap = cv2.VideoCapture(0) # 替换为K230摄像头
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
ret, frame = cap.read()
if not ret:
break
# 1. 预处理:提取白色标线(巡线场景常用)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY) # 白色阈值
# 2. ROI提取:只取图像底部1/3区域(车辆前方)
h, w = thresh.shape
roi = thresh[int(h*2/3):h, 0:w]
roi_h, roi_w = roi.shape
# 3. 提取标线像素坐标
points = np.column_stack(np.where(roi == 255)) # (y, x) 格式
if len(points) == 0:
cv2.putText(frame, "No Line Detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow("Line Fitting", frame)
if cv2.waitKey(1) == ord('q'):
break
continue
# 坐标转换:roi的y轴转换为全局y轴,x轴不变
points[:, 0] += int(h*2/3) # y坐标偏移
points = points[:, [1, 0]] # 转换为 (x, y) 格式
# 4. 快速线性回归拟合
k, b = fast_linear_regression(points)
# 5. 绘制拟合直线(在原图上)
x1 = 0
y1 = int(k * x1 + b)
x2 = w
y2 = int(k * x2 + b)
cv2.line(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 6. 显示转向信息
direction = "Straight" if abs(k) < 0.1 else "Left" if k > 0 else "Right"
cv2.putText(frame, f"Direction: {direction} (k={k:.2f})", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
cv2.imshow("Line Fitting", frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
6、K230 平台适配要点
性能优化:将 Python 代码转为 C/C++(K230 SDK 支持),单帧拟合耗时可降至 0.5ms 内,满足实时巡线需求(≥30fps)。
硬件协同:用 K230 的 ISP 模块预处理图像(自动曝光、降噪),NPU 加速阈值分割和 ROI 提取,CPU 专注回归计算。
接口适配:拟合结果(k,b)可直接通过 UART 或 GPIO 输出给电机控制模块,实现 “检测 - 决策 - 控制” 闭环。


【花雕动手做】CanMV K230 AI 视觉识别模块之巡线基础:快速线性回归
项目测试实验代码
#【花雕动手做】CanMV K230 AI 视觉识别模块之巡线基础:快速线性回归
import time, os, sys
from media.sensor import *
from media.display import *
from media.media import *
# 图像处理参数 / Image processing parameters
THRESHOLD = (0, 100) # 灰度阈值范围:检测0-100灰度值的像素 / Grayscale threshold range
BINARY_VISIBLE = True # 是否显示二值化图像 / Whether to show binary image
# 注意:启用二值化可能降低FPS / Note: enabling binary mode may reduce FPS
# 显示参数 / Display parameters
DISPLAY_WIDTH = 640 # LCD显示宽度 / LCD display width
DISPLAY_HEIGHT = 480 # LCD显示高度 / LCD display height
SENSOR_WIDTH = 640 # 图像宽度 / Image width
SENSOR_HEIGHT = 480 # 图像高度 / Image height
def init_sensor():
"""初始化摄像头 / Initialize camera sensor"""
# sensor = Sensor(width=1280, height=960) # 4:3比例 / 4:3 aspect ratio (已注释)
sensor = Sensor() # 创建传感器实例
sensor.reset() # 重置传感器到默认状态
# 设置图像分辨率为640x480
sensor.set_framesize(width=SENSOR_WIDTH, height=SENSOR_HEIGHT)
# 设置像素格式为灰度图像
# 灰度图单通道处理,提高线性回归计算速度
sensor.set_pixformat(Sensor.GRAYSCALE)
return sensor
def init_display():
"""初始化显示 / Initialize display"""
# 初始化ST7701显示屏,同时输出到IDE便于调试
Display.init(Display.ST7701, to_ide=True)
# 初始化媒体管理器,分配图像处理资源
MediaManager.init()
def process_image(img):
"""
处理图像并进行线性回归 / Process image and perform linear regression
参数: img - 输入的灰度图像
返回: line - 检测到的线性回归结果对象
"""
# 二值化处理 / Binary thresholding
# 如果启用二值化显示,将图像转换为黑白二值图像
if BINARY_VISIBLE:
img = img.binary([THRESHOLD]) # 根据阈值将图像二值化
# 线性回归检测 / Linear regression detection
# 在图像中寻找符合阈值条件的像素点,并用直线拟合这些点
# 参数说明:
# - 如果BINARY_VISIBLE为True,则查找白色像素(255,255)
# - 如果为False,则在THRESHOLD阈值范围内查找像素
# magnitude(): 回归拟合度指标(0,INF], 0表示圆形,值越大越线性
# magnitude(): regression fitness index (0,INF], 0=circle, larger=more linear
line = img.get_regression([(255,255) if BINARY_VISIBLE else THRESHOLD])
# 如果检测到直线
if line:
# 在图像上绘制检测线 / Draw detected line on image
# line.line(): 返回直线的起点和终点坐标 (x1, y1, x2, y2)
# color=127: 灰色,在灰度图中显示为中等灰度
# thickness=4: 4像素线宽,确保线条清晰可见
img.draw_line(line.line(), color=127, thickness=4)
# 打印直线信息(包含角度、长度、拟合度等)
print(line)
return line
def main():
try:
# 初始化设备 / Initialize devices
sensor = init_sensor() # 初始化摄像头
init_display() # 初始化显示系统
sensor.run() # 启动摄像头采集
# 初始化性能监控时钟
clock = time.clock()
# 计算显示偏移量以居中显示 / Calculate display offsets for center alignment
# 由于处理分辨率和显示分辨率相同(640x480),偏移量为0
x_offset = round((DISPLAY_WIDTH - SENSOR_WIDTH) / 2) # (640-640)/2 = 0
y_offset = round((DISPLAY_HEIGHT - SENSOR_HEIGHT) / 2) # (480-480)/2 = 0
# 主循环 - 实时线性回归检测
while True:
clock.tick() # 更新时钟,用于FPS计算
# 捕获图像 / Capture image
img = sensor.snapshot() # 从摄像头获取一帧灰度图像
# 处理图像 / Process image
line = process_image(img) # 执行线性回归检测
# 显示图像 / Display image
Display.show_image(img, x=x_offset, y=y_offset) # 全屏显示处理后的图像
# 打印FPS和拟合度 / Print FPS and magnitude
# magnitude: 线性拟合质量指标,值越大表示直线特征越明显
magnitude = str(line.magnitude()) if line else "N/A" # 如果有直线则获取拟合度,否则显示"N/A"
print(f"FPS {clock.fps()}, mag = {magnitude}") # 输出帧率和拟合度
except KeyboardInterrupt as e:
# 处理用户中断(Ctrl+C)
print("用户中断 / User interrupted: ", e)
except Exception as e:
# 处理其他所有异常
print(f"发生错误 / Error occurred: {e}")
finally:
# 清理资源 / Cleanup resources(确保资源正确释放)
if 'sensor' in locals() and isinstance(sensor, Sensor):
sensor.stop() # 停止摄像头采集
Display.deinit() # 关闭显示驱动
MediaManager.deinit() # 释放媒体资源
if __name__ == "__main__":
main() # 程序入口点
代码结构
图像获取和处理:
通过摄像头捕获640x480分辨率的灰度图像
可以选择是否对图像进行二值化处理(将灰度值在0-100范围内的像素转为白色)
线性回归检测:
对图像进行线性回归分析,寻找图像中的直线特征
计算回归线的拟合度(magnitude值),数值越大表示越接近直线
在检测到直线时,在图像上绘制这条线
显示功能:
使用LCD屏幕显示处理后的图像
图像在屏幕上居中显示
实时显示FPS(每秒帧数)和直线拟合度
程序结构:
初始化部分:设置摄像头参数、显示器和媒体管理器
主循环部分:不断捕获图像、处理、显示的过程
异常处理:包含完整的异常处理机制和资源清理
快速线性回归算法
get_regression()
image.get_regression(thresholds[, invert=False[, roi[, x_stride=2[, y_stride=1[, area_threshold=10[, pixels_threshold=10[, robust=False]]]]]]])
对图像所有阈值像素进行线性回归计算。这一计算通过最小二乘法进行,通常速度较快,但不能处理任何异常值。 若 robust 为True,则将使用泰尔指数。泰尔指数计算图像中所有阈值像素间的所有斜率的中值。 若在阈值转换后设定太多像素,即使在80x60的图像上,这一N^2操作也可能将您的FPS降到5以下。 但是,只要阈值转换后的进行设置的像素数量较少,即使在超过30%的阈值像素为异常值的情况下,线性回归也依然有效。
这一方法返回的是一个 image.line 对象。
thresholds 必须是元组列表。 [(lo, hi), (lo, hi), …, (lo, hi)] 定义你想追踪的颜色范围。 对于灰度图像,每个元组需要包含两个值 - 最小灰度值和最大灰度值。 仅考虑落在这些阈值之间的像素区域。 对于RGB565图像,每个元组需要有六个值(l_lo,l_hi,a_lo,a_hi,b_lo,b_hi) - 分别是LAB L,A和B通道的最小值和最大值。 为方便使用,此功能将自动修复交换的最小值和最大值。 此外,如果元组大于六个值,则忽略其余值。相反,如果元组太短,则假定其余阈值处于最大范围。
注:除了快速线性回归算法以外,巡线还有其它可行的方案,我们需要根据实际情况去尽量选择最优的一种解决方案。
实验串口返回情况

实验场景图





8931

被折叠的 条评论
为什么被折叠?



