**题目描述:**
给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
示例 1: 输入: [1,2,3,4,5,6,7] 和 k = 3 输出: [5,6,7,1,2,3,4]
解释:
向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]
示例 2: 输入: [-1,-100,3,99] 和 k = 2 输出: [3,99,-1,-100]
解释:
向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]
**说明:**
尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
要求使用空间复杂度为 O(1) 的原地算法。
**简洁思路:**
首先,初始化一个数组temp,依次遍历原数组中的每一个值添加到temp中;
然后,遍历temp中的每一个值,通过(j+k)%numsSize计算数组的下标,把temp数组中的每一个值添加到nums中。
**注:**[1,2,3,4,5,6,7]的下标依次为[0,1,2,3,4,5,6]数组旋转后为[5,6,7,1,2,3,4]小标为[0,1,2,3,4,5,6]
观察得到小标变化,原来0—>旋转后的3;原来1—>旋转后的4;原来2—>旋转后的5;原来3—>旋转后的6;原来4—>旋转后的0;原来5—>旋转后的1;原来6—>旋转后的2.
**代码如下:**
void rotate(int* nums, int numsSize, int k) {
int temp[numsSize],p=0;
for(int i=0;i<numsSize;i++)
temp[i]=nums[i];
for(int j=0;j<numsSize;j++){
p=(j+k)%numsSize;
nums[p]=temp[j];
}
return *nums;
}
**方法二:**
我们可以通过三次反转的方式:
首先,写一个反转函数,如reverse,借助第三变量temp实现反转;
第二步,反转初始位到numsSize - k - 1;
第三步,反转numsSize - k 到 numsSize - 1;
第四步,反转整个数组。
**代码如下:**
void rotate(int* nums, int numsSize, int k) {
k = k % numsSize;
reverse(nums , 0 , numsSize - k - 1);
reverse(nums , numsSize - k , numsSize - 1);
reverse(nums , 0 , numsSize - 1);
}
void reverse(int* nums , int start , int end){
while(start < end){
int tmp = nums[start];
nums[start] = nums[end];
nums[end] = tmp;
start ++;
end --;
}
return nums;
}