深度学习
牛顿爱吃香蕉
这个作者很懒,什么都没留下…
展开
-
论文笔记:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
文章目录摘要1、介绍2、相关工作3、Faster R-CNN3.1、RPN3.1.1、Anchors3.1.2、损失函数3.1.3、训练RPN3.2、RPN和Faster R-CNN共享特征3.3、实现细节4、实验5、总结摘要当前最优的目标检测算法依赖区域提议算法假设目标位置。尽管 SPPnetSPPnetSPPnet[1] 和 Fast R−CNNFast~R-CNNFast&nb...原创 2019-03-09 22:31:55 · 1213 阅读 · 0 评论 -
深度学习模型压缩方法综述(二)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 深...转载 2019-09-24 10:16:11 · 395 阅读 · 0 评论 -
深度学习模型压缩方法综述(一)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...转载 2019-09-24 10:08:19 · 825 阅读 · 0 评论 -
目标检测(损失函数):目标定位损失—GIoU
目标检测(损失函数):目标定位损失—GIoU1、提出问题2、解决方案CVPR 2019CVPR~2019CVPR 2019 有一篇介绍目标检测定位损失函数的 paperpaperpaper:论文链接:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression1、提...原创 2019-08-28 22:30:23 · 7649 阅读 · 0 评论 -
目标检测(后处理):从 NMS 到 Soft-NMS 到 Softer NMS
目标检测(后处理):从 NMS 到 Soft-NMS 到 Softer NMS原创 2019-08-23 17:19:26 · 3936 阅读 · 0 评论 -
深度学习:RNN基础
RNN 基础符号说明1、基本循环神经网络的前向传播2、Long Short-Term Memory (LSTM) 网络3、反向传播3.1、基本循环神经网络的反向传播3.2、LSTM 反向传播符号说明上标 [l][l][l] 表示 lthl^{th}lth 层.例如:a[4]a^{[4]}a[4] 为 4th4^{th}4th 层激活. W[5]W^{[5]}W[5] 和 b[5]b^{...原创 2019-08-19 17:46:08 · 823 阅读 · 0 评论 -
论文笔记:CornerNet—Detecting Objects as Paired Keypoints
CornerNet: Detecting Objects as Paired Keypoints1、摘要2、细节2.1、概览2.2、检测角点3、实验4、总结1、摘要作者提出了一种 single−stagesingle-stagesingle−stage 检测器,将目标边界框看作一对关键点(左上和右下)的检测。不需要设计一组 anchoranchoranchor,作者提出新的池化方法 corne...原创 2019-06-13 17:15:40 · 615 阅读 · 2 评论 -
论文笔记:Object Detection in 20 Years: A Surve(目标检测20年研究综述)
文章目录1、介绍2、目标检测的20年发展历程2.1、目标检测路线2.1.1、里程碑:传统检测器2.1.2、基于CNN的两阶段检测器2.1.3、基于CNN的单阶段检测器2.2、目标检测数据集和度量标准2.2.1、度量准则2.3、目标检测技术发展2.3.1、早期检测2.3.2、多尺度检测技术的发展2.3.3、边界框回归技术发展2.3.4、Context Priming2.3.5、非最大抑制2.3.6、...原创 2019-05-28 22:14:01 · 5464 阅读 · 0 评论 -
论文笔记:OpenPose(Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields)
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields1、主要成果2、算法细节2.1、算法原理2.2、实现细节2.2.1、网络结构2.2.2、损失函数2.2.3、GT 置信图生成2.2.4、PAFs 生成2.2.5、PAFs 多人分析2.2.6、结果3、总结4、感想1、主要成果提出将人体部位与个体联系起来的非参数化...原创 2019-06-05 20:48:21 · 3392 阅读 · 0 评论 -
论文笔记:RetinaNet(Focal Loss for Dense Object Detection)
文章目录1、摘要2、介绍3、相关研究3、焦点损失3.1、平衡交叉熵3.2、焦点损失定义3.3、类不平衡和模型初始化3.4、类不平衡和 two-stage 检测器4、RetinaNet 检测器4.1、训练1、摘要one−stageone-stageone−stage 检测器对目标可能的位置进行密集采样,相比于 two−stagetwo-stagetwo−stage 方法更简单、速度更快,但是精度...原创 2019-05-10 19:19:17 · 2130 阅读 · 3 评论 -
论文笔记:RMPE: Regional Multi-Person Pose Estimation
文章目录0、摘要1、介绍2、相关研究2.1、单人姿态估计2.2、多人姿态估计3、RMPE3.1、对称 STN 和平行 SPPE3.2、参数化姿态非最大抑制3.3、姿态引导的提议生成器4、实验4.1、评估数据集4.2、测试实现细节4.3、结果4.4、切除实验4.5、错误示例5、总结0、摘要当前人体检测已经有很好的性能,但是定位和识别的一些小误差仍不可避免。这些误差可能导致单人姿态估计(SPPES...原创 2019-04-23 21:25:23 · 812 阅读 · 0 评论 -
论文笔记:Learning Feature Pyramids for Human Pose Estimation
文章目录0、摘要1、介绍2、相关研究3、框架3.1、回顾堆叠沙漏网络3.2、金字塔残差模块(PRMs)3.3、讨论4、训练和推理4.1、初始化多分支网络4.2、输出方差累积5、实验5.1、人体姿态估计实验5.1.1、实现细节5.1.2、实验结果5.1.3、切除实验5.2、在 CIFAR-10 图像分类实验6、总结0、摘要关节式人体姿态估计是一项有挑战性的视觉任务。这在相机视角变化或者严重缩短引...原创 2019-04-26 21:13:43 · 963 阅读 · 0 评论 -
深度学习:梯度下降优化算法
文章目录1、梯度下降1.1、Batch 梯度下降1.2、随机梯度下降(SGD)1.3、Mini-batch 梯度下降2、梯度下降优化算法2.1、Momentum2.2、Nesterov 加速梯度2.3、Adagrad2.4、Adadelta2.5、RMSprop2.6、Adam2.7、AdaMax2.8、Nadam2.9、各优化方法收敛速度的比较2.10、如何选择优化方法3、1、梯度下降梯度下...原创 2019-04-09 14:08:08 · 724 阅读 · 0 评论 -
论文笔记:Stacked Hourglass Networks for Human Pose Estimation
文章目录1、摘要2、介绍3、相关研究4、网络架构4.1、沙漏设计4.2、层实现4.3、堆叠沙漏使用中间监督4.4、训练5、结果5.1、评估5.2、切除实验6、进一步分析6.1、多人6.2、遮挡7、总结1、摘要作者提出新的卷积网络架构用于人体姿态估计。特征在所有尺度上进行处理,并整合,以最有效地捕捉与身体相关的各种空间关系。作者展示了,重复进行自底向上和自顶向下的处理,并配合中间监督对提升网络的...原创 2019-04-02 23:00:46 · 1579 阅读 · 1 评论 -
论文笔记:Convolutional Pose Machines
文章目录1、摘要2、介绍3、相关研究1、摘要姿态机为学习丰富的隐式空间模型提供了序列预测框架。作者展示了一个系统设计,如何将卷积网络结合到姿态机框架中,用于学习图像特征,以及用于姿态估计任务的图像相关空间模型。本文的贡献是隐式建模结构化预测任务中变量之间的远程相关性,例如关节式姿态估计。作者通过设计一个由卷积网络组成的序列结构来实现这一点,卷积网络直接对前几个阶段的置信图进行操作,对部位位置产...原创 2019-03-29 10:35:20 · 1663 阅读 · 0 评论 -
论文笔记:SSD(Single Shot MultiBox Detector)
文章目录1、概述2、SSD1、概述通常目标检测系统的套路是:假设边界框重采样每个框的像素或特征使用高质量分类器这个套路虽然管用,但是计算量太大,见效慢,应用在嵌入式系统中,即使使用高端硬件也很难达到实时运算速度。作者提出了一种称之为 SSDSSDSSD 的方法,它将边界框输出空间离散化为每个特征图位置下的具有不同纵横比和尺度的一组默认框。预测时,网络为每个默认框生成各目标类出现在...原创 2019-04-06 21:08:09 · 1216 阅读 · 0 评论 -
论文笔记:You Only Look Once: Unified, Real-Time Object Detection
文章目录摘要1、介绍2、统一检测2.1、网络设计2.2、训练2.3、推理2.4、$YOLO$ 的局限性3、和其他系统的比较4、实验4.1、和其他实时系统的比较4.2、VOC 2007误差分析4.3、连接 Fast R-CNN 和 YOLO4.4、VOC2012结果4.5、艺术品中的人体检测4.6、野外实时检测6、总结摘要之前关于目标检测的研究通过再利用分类器实现检测,本文作者基于回归的方法,使...原创 2019-03-16 15:58:01 · 1090 阅读 · 0 评论 -
论文总结:YOLOv1 , YOLOv2 and YOLOv3
文章目录1、YOLO_v2 VS YOLO_v12、Brief Summary2.1、Bounding Boxes 和 Anchor Boxes 比较2.2、YOLO_v1和YOLO_v2设计比较2.3、YOLO_v1和YOLO_v2性能比较3、YOLOv33.1、YOLOv3 特点3.2、作者的尝试4、整理的不是很好,有问题欢迎大家批评指正!1、YOLO_v2 VS YOLO_v1根据 YO...原创 2019-03-19 19:00:16 · 907 阅读 · 0 评论 -
深度学习模型压缩方法综述(三)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本...转载 2019-09-24 10:19:05 · 303 阅读 · 0 评论