信号处理基础知识

信号合成与分解

可以类比向量的分解,向量分解举例:

在三维坐标中,三维空间向量 a → \overset{→}{a} a=[3,1,2],要将其投影至新的正交基{ x → , y → , z → \overset{→}{x},\overset{→}{y},\overset{→}{z} x,y,z}上。

a → = ⟨ a → , x → ⟩ ⟨ x → , x → ⟩ x → + ⟨ a → , y → ⟩ ⟨ y → , y → ⟩ y → + ⟨ a → , z → ⟩ ⟨ z → , z → ⟩ z → \overset{→}{a} = \frac{\left\langle \overset{→}{a},\overset{→}{x} \right\rangle}{\left\langle \overset{→}{x},\overset{→}{x} \right\rangle}\overset{→}{x} + \frac{\left\langle \overset{→}{a},\overset{→}{y} \right\rangle}{\left\langle \overset{→}{y},\overset{→}{y} \right\rangle}\overset{→}{y} + \frac{\left\langle \overset{→}{a},\overset{→}{z} \right\rangle}{\left\langle \overset{→}{z},\overset{→}{z} \right\rangle}\overset{→}{z} a=x,xa,xx+y,ya,yy+z,za,zz

在这里插入图片描述
其中: ⟨ a → , x → ⟩ \left\langle \overset{→}{a},\overset{→}{x} \right\rangle a,x为向量的内积 ⟨ a → , x → ⟩ ⟨ x → , x → ⟩ x → \frac{\left\langle \overset{→}{a},\overset{→}{x} \right\rangle}{\left\langle \overset{→}{x},\overset{→}{x} \right\rangle}\overset{→}{x} x,xa,xx称为 a → \overset{→}{a} a在向量 x → \overset{→}{x} x上的投影,内积为0表示两个向量垂直

正交基:n维空间中n个相互正交的向量构成正交基

n维向量 a → \overset{→}{a} a可以分解到一组n维正交基上{ v 1 → , v 2 → , … , v n → , \overset{→}{v_{1}},\overset{→}{v_{2}},\ldots,\overset{→}{v_{n}}, v1,v2,,vn,},在对应基上的坐标值为 ⟨ a → , v i → ⟩ ⟨ v i → , v i → ⟩ \frac{\left\langle \overset{→}{a},\overset{→}{v_{i}} \right\rangle}{\left\langle \overset{→}{v_{i}},\overset{→}{v_{i}} \right\rangle} vi,via,vi

在这里插入图片描述

由此推出信号的合成与分解

概念:

函数的内积 ⟨ f 1 ( t ) , f 2 ( t ) ⟩ = ∫ t 1 t 2 f 1 ( t ) f 2 ( t ) d t \left\langle f_{1}(t),f_{2}(t) \right\rangle = \int_{t_{1}}^{t_{2}}{f_{1}(t)f_{2}(t)dt} f1(t),f2(t)=t1t2f1(t)f2(t)dt,可以类比向量正交,加法变成积分运算

函数的正交:内积为0,两个函数正交

正交函数集:若函数 f 1 ( t ) , f 2 ( t ) , … , f n ( t ) f_{1}\left( t \right),f_{2}(t),\ldots,f_{n}(t) f1(t),f2(t),,fn(t)彼此正交,则组成正交函数集,而三角函数集{ 1 , c o s x , s i n x , c o s 2 x , s i n 2 x , … , c o s n x , s i n n x 1,cosx,sinx,cos2x,sin2x,\ldots,cosnx,sinnx 1,cosx,sinx,cos2x,sin2x,,cosnx,sinnx}内的函数在区间[ − π , π - \pi,\pi π,π]彼此正交,各自内积为0。

傅里叶级数的几何意义:周期信号可以投影到三角函数正交基上,其系数是信号在对应频率的基上的坐标,代表该频率的分量的强度。

在这里插入图片描述

周期信号 f ( t ) f\left( t \right) f(t),其周期为T,当满足狄里赫利条件,可以分解为三角级数,该三角级数称为傅里叶级数。

f ( t ) = a 0 2 + ∑ k = 1 ∞ ( a k cos ⁡ ( kwt ) + b k s i n ( k w t ) ) f\left( t \right) = \frac{a_{0}}{2} + \sum_{k = 1}^{\infty}{(a_{k}\cos\left( \text{kwt} \right) + b_{k}sin(kwt))} f(t)=2a0+k=1(akcos(kwt)+bksin(kwt))

其中, w = 2 π T ,   w = \frac{2\pi}{T},\ w=T2π, 

a k = ⟨ f ( t ) , cos ⁡ ( kwt ) ⟩ ⟨ cos ⁡ ( kwt ) , cos ⁡ ( kwt ) ⟩ = 2 T ∫ − 2 T 2 T f ( t ) cos ⁡ ( kwt ) dt a_{k} = \frac{\left\langle f\left( t \right),\cos\left( \text{kwt} \right) \right\rangle}{\left\langle \cos\left( \text{kwt} \right),\cos\left( \text{kwt} \right) \right\rangle} = \frac{2}{T}\int_{- \frac{2}{T}}^{\frac{2}{T}}{f\left( t \right)\cos\left( \text{kwt} \right)\text{dt}} ak=cos(kwt),cos(kwt)f(t),cos(kwt)=T2T2T2f(t)cos(kwt)dt

b k = ⟨ f ( t ) , sin ⁡ ( kwt ) ⟩ ⟨ sin ⁡ ( kwt ) , sin ⁡ ( kwt ) ⟩ = 2 T ∫ − 2 T 2 T f ( t ) sin ⁡ ( kwt ) dt b_{k} = \frac{\left\langle f\left( t \right),\sin\left( \text{kwt} \right) \right\rangle}{\left\langle \sin\left( \text{kwt} \right),\sin\left( \text{kwt} \right) \right\rangle} = \frac{2}{T}\int_{- \frac{2}{T}}^{\frac{2}{T}}{f\left( t \right)\sin\left( \text{kwt} \right)\text{dt}} bk=sin(kwt),sin(kwt)f(t),sin(kwt)=T2T2T2f(t)sin(kwt)dt

采用辅助角公式 a sin ⁡ ( x ) + b cos ⁡ ( x ) = a 2 + b 2 c o s ( x − a r c t a n a b ) a\sin\left( x \right) + b\cos\left( x \right) = \sqrt{a^{2} + b^{2}}cos(x - arctan\frac{a}{b}) asin(x)+bcos(x)=a2+b2 cos(xarctanba)

f ( t ) = a 0 2 + ∑ k = 1 ∞ ( a k cos ⁡ ( kwt ) + b k s i n ( k w t ) ) f\left( t \right) = \frac{a_{0}}{2} + \sum_{k = 1}^{\infty}{(a_{k}\cos\left( \text{kwt} \right) + b_{k}sin(kwt))} f(t)=2a0+k=1(akcos(kwt)+bksin(kwt))
f ( t ) = a 0 2 + ∑ k = 1 ∞ ( A k cos ⁡ ( k w t + φ ) ) f\left( t \right) = \frac{a_{0}}{2} + \sum_{k = 1}^{\infty}{(A_{k}\cos\left( kwt + \varphi \right))} f(t)=2a0+k=1(Akcos(kwt+φ))

其中 A k A_{k} Ak表示幅度, φ \varphi φ表示相位

可以引入复指数形式,将单边谱转换至双边谱

e jwt = cos ⁡ ( wt ) + j s i n ( wt ) ; e^{\text{jwt}} = \cos\left( \text{wt} \right) + jsin\left( \text{wt} \right); ejwt=cos(wt)+jsin(wt);

e − jwt = cos ⁡ ( wt ) − j s i n ( wt ) ; e^{- \text{jwt}} = \cos\left( \text{wt} \right) - jsin\left( \text{wt} \right); ejwt=cos(wt)jsin(wt);

根据以上,得 c o s ( w t ) = e jwt + e − jwt 2 cos(wt) = \frac{e^{\text{jwt}} + e^{- \text{jwt}}}{2} cos(wt)=2ejwt+ejwt,可知 c o s ( k wt + φ ) = e j ( kwt + φ ) + e − j ( kwt + φ ) 2 cos(k\text{wt} + \varphi) = \frac{e^{j(\text{kwt} + \varphi)} + e^{- j(\text{kwt} + \varphi)}}{2} cos(kwt+φ)=2ej(kwt+φ)+ej(kwt+φ)

将余弦信号的单边谱,变为复指数形式的双边谱。幅度谱偶对称,幅值减半;相位谱奇对称。

f ( t ) = a 0 2 + ∑ k = 1 ∞ ( A k cos ⁡ ( k w t + φ ) ) = a 0 2 + A k 2 ∑ k = 1 ∞ e j ( kwt + φ ) + A k 2 ∑ k = 1 ∞ e − j ( kwt + φ ) f\left( t \right) = \frac{a_{0}}{2} + \sum_{k = 1}^{\infty}{(A_{k}\cos\left( kwt + \varphi \right))} = \frac{a_{0}}{2} + \frac{A_{k}}{2}\sum_{k = 1}^{\infty}e^{j(\text{kwt} + \varphi)} + \frac{A_{k}}{2}\sum_{k = 1}^{\infty}e^{- j(\text{kwt} + \varphi)} f(t)=2a0+k=1(Akcos(kwt+φ))=2a0+2Akk=1ej(kwt+φ)+2Akk=1ej(kwt+φ)

在这里插入图片描述

复指数函数集也有正交性。{ e − j nwt e^{- j\text{nwt}} ejnwt,…, e − j 2 wt e^{- j2\text{wt}} ej2wt,
e − j wt , e j 0 wt , e j wt , … , e j nwt e^{- j\text{wt}},e^{j0\text{wt}},e^{j\text{wt}},\ldots,e^{j\text{nwt}} ejwt,ej0wt,ejwt,,ejnwt}在区间[ − π / 2 , π / 2 - \pi/2,\pi/2 π/2,π/2]彼此正交。

傅里叶级数的复指数形式:周期信号可以投影到复指数正交基上,系数是信号在对应频率的基上的坐标,代表该频率的分量强度。

复数的内积是复数与其共轭复数相乘, ⟨ a → , a → ⟩ = a → a → ∗ \left\langle \overset{→}{a},\overset{→}{a} \right\rangle = \overset{→}{a}{\overset{→}{a}}^{*} a,a=aa,
a → ∗ {\overset{→}{a}}^{*} a为共轭(实数不变,虚数取反)

f ( t ) = ∑ k = − ∞ ∞ C k e j kwt , k = 0 , ± 1 , ± 2 , … , ± n f\left( t \right) = \sum_{k = - \infty}^{\infty}{C_{k}e^{j\text{kwt}}},k = 0, \pm 1, \pm 2,\ldots, \pm n f(t)=k=Ckejkwt,k=0,±1,±2,,±n

C k = ⟨ f ( t ) , e j kwt ⟩ ⟨ e j kwt , e j kwt ⟩ = ∫ − 2 T 2 T f ( t ) e − jkwt dt ∫ − 2 T 2 T e jkwt e − jkwt dt = 1 T ∫ − T 2 T 2 f ( t ) e − jkwt dt C_{k} = \frac{\left\langle f\left( t \right),e^{j\text{kwt}} \right\rangle}{\left\langle e^{j\text{kwt}},e^{j\text{kwt}} \right\rangle} = \frac{\int_{- \frac{2}{T}}^{\frac{2}{T}}{f\left( t \right)e^{- \text{jkwt}}\text{dt}}}{\int_{- \frac{2}{T}}^{\frac{2}{T}}{e^{\text{jkwt}}e^{- \text{jkwt}}\text{dt}}} = \frac{1}{T}\int_{- \frac{T}{2}}^{\frac{T}{2}}{f\left( t \right)e^{- \text{jkwt}}\text{dt}} Ck=ejkwt,ejkwtf(t),ejkwt=T2T2ejkwtejkwtdtT2T2f(t)ejkwtdt=T12T2Tf(t)ejkwtdt

系统

信号基于单位脉冲信号的分解:

x [ n ] = ∑ k = − ∞ ∞ x [ k ] δ [ n − k ] x\lbrack n\rbrack = \sum_{k = - \infty}^{\infty}{x\left\lbrack k \right\rbrack\delta\lbrack n - k\rbrack} x[n]=k=x[k]δ[nk],基于离散时间下, δ [ n − k ] \delta\lbrack n - k\rbrack δ[nk]为不断移动的单位脉冲响应, x [ k ] x\left\lbrack k \right\rbrack x[k]为该点幅值。(卷积和)

x ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ x(t) = \int_{- \infty}^{\infty}{x\left( \tau \right)h(t - \tau)d\tau} x(t)=x(τ)h(tτ)dτ,基于连续时间下,(卷积积分)

系统可以用其对单位脉冲响应 h [ t ] h\lbrack t\rbrack h[t] h [ n ] h\lbrack n\rbrack h[n]描述

在这里插入图片描述

线性时不变系统(线性:输入a+输入b的结果等于输入a+b的结果;时不变:系统输入与输出关系不随时间变化而变化)对任意信息 x [ n ] x\lbrack n\rbrack x[n] x ( t ) x(t) x(t)的响应为系统按照 x [ n ] x\lbrack n\rbrack x[n] x ( t ) x(t) x(t)对单位脉冲响应 h [ n ] h\lbrack n\rbrack h[n] h ( t ) h(t) h(t)进行线性组合得到。

卷积运算不适用于求取系统的响应,仅适用于线性时不变系统。

信号相关计数

在这里插入图片描述

线性时不变系统对复指数信号的响应

线性时不变系统对 e ( σ + j w ) t e^{(\sigma + jw)t} e(σ+jw)t [ ∣ A ∣ e j w ] n \left\lbrack \left| A \right|e^{jw} \right\rbrack^{n} [Aejw]n的响应仍是一个复指数信号,不影响原信号的频率w,只是改变了原信号的幅值和相位。

e ( σ + j w ) t e^{(\sigma + jw)t} e(σ+jw)t可以写成 e s t e^{st} est的形式, s s s是以实部+虚部表示形式的复数 σ + j w \sigma + jw σ+jw

[ ∣ A ∣ e j w ] n \left\lbrack \left| A \right|e^{jw} \right\rbrack^{n} [Aejw]n可以写成 z n z^{n} zn的形式, z z z是以模长-辐角表示形式的复数 [ ∣ A ∣ e j w ] n \left\lbrack \left| A \right|e^{jw} \right\rbrack^{n} [Aejw]n

e s t e^{st} est->连续时间LTI系统-> H ( s ) e s t H(s)e^{st} H(s)est(Laplace变换)

z n z^{n} zn->连续时间LTI系统-> H [ z ] z n H\lbrack z\rbrack z^{n} H[z]zn(Z变换)

证明:按照系统响应的定义,系统对 e s t e^{st} est的响应为系统单位脉冲函数 h ( t ) h(t) h(t) e s t e^{st} est的卷积,因此,有:

∫ − ∞ ∞ h ( τ ) e s ( t − τ ) d τ = e s t ∫ − ∞ ∞ h ( τ ) e − s τ dτ \int_{- \infty}^{\infty}{h\left( \tau \right)e^{s(t - \tau)}d\tau =}e^{st}\int_{- \infty}^{\infty}{h\left( \tau \right)e^{- s\tau}\text{dτ}} h(τ)es(tτ)dτ=esth(τ)esτ
(连续时间,Laplace变换)

∑ k = − ∞ ∞ h [ k ] z n − k \sum_{k = - \infty}^{\infty}{h\left\lbrack k \right\rbrack z^{n - k}} k=h[k]znk= z n ∑ k = − ∞ ∞ h [ k ] z − k z^{n}\sum_{k = - \infty}^{\infty}{h\left\lbrack k \right\rbrack z^{- k}} znk=h[k]zk
(离散时间,Z变换)

对于离散时间形式,输入信号可以表示成一系列复指数信号 { z 1 n , z 2 n , z 3 n , … } \{{z_{1}}^{n},{z_{2}}^{n},{z_{3}}^{n},\ldots\} {z1n,z2n,z3n,}线性组合的形式,即:

x ( t ) = a 1 z 1 n + a 2 z 2 n + a 3 z 3 n + … x\left( t \right) = a_{1}{z_{1}}^{n} + a_{2}{z_{2}}^{n} + a_{3}{z_{3}}^{n} + \ldots x(t)=a1z1n+a2z2n+a3z3n+

根据线性时不变系统的线性性质,有:

y [ n ] = a 1 H [ z 1 ] z 1 n + a 2 H [ z 2 ] z 2 n + a 3 H [ z 3 ] z 3 n + … y\lbrack n\rbrack = a_{1}H\lbrack z_{1}\rbrack{z_{1}}^{n} + a_{2}H\lbrack z_{2}\rbrack{z_{2}}^{n} + a_{3}H\lbrack z_{3}\rbrack{z_{3}}^{n} + \ldots y[n]=a1H[z1]z1n+a2H[z2]z2n+a3H[z3]z3n+

1、LTI系统的响应仍是同样一组复指数信号的线性组合,只是对信号的幅值和相位进行了调整。

2、通过Laplace变换或Z变换,将系统响应的卷积运算转成了简单的乘法运算。

3、系统的单位脉冲响应也可以表示成复指数信号的线性组合,若复指数信号的实部小于0,系统稳定。

快速傅里叶变换

计算机采用"离散傅里叶变换DFT"对信号开展分析。

基本原理:将采集到的信号(信号长度为 N 0 N_{0} N0)看成周期为 N 0 N_{0} N0的离散时间周期信号,并计算DFS。

将采集到的信号看成周期信号,计算会有误差,会产生频谱泄露。

如何减弱频谱泄露

  1. 尽可能获得更多数据

  2. 对信号进行加窗,将信号与窗函数在时域相乘,这类方式"治标不治本",通过数学技巧,优化了频谱

Z变换

对于离散时间非周期 x [ n ] x\left\lbrack n \right\rbrack x[n],它的傅里叶变换为

F ( Ω ) F(\Omega) F(Ω)= z n ∑ n = − ∞ ∞ x [ n ] e − jΩn z^{n}\sum_{n = - \infty}^{\infty}{x\left\lbrack n \right\rbrack e^{- \text{jΩn}}} znn=x[n]ejΩn

令z= ∣ A ∣ e jn \left| A \right|e^{\text{jn}} Aejn,z变换, H ( z ) = ∑ k = − ∞ ∞ x [ n ] z − n H\left( z \right) = \sum_{k = - \infty}^{\infty}{x\left\lbrack n \right\rbrack z^{- n}} H(z)=k=x[n]zn,z变换是离散时间傅里叶变换的一般形式。

用途:

  1. 离散时间线性时不变系统可用差分方程描述,Z变换可将差分方程转换为传递函数,通过分析传递函数的零点、极点,可直观看出离散时间线性时不变系统的特性;

  2. 结合Z变换和Z反变换,可以求解离散时间LTI系统对输入信号的响应。

在这里插入图片描述

极点和零点的物理含义:

极点(𝑧1,𝑧2,𝑧3,…)代表系统的模态,系统的单位脉冲响应是这些极点表示的模态的线性组合:

y [ n ] = c 1 z 1 n + c 2 z 2 n + c 3 z 3 n + … y\lbrack n\rbrack = c_{1}{z_{1}}^{n} + c_{2}{z_{2}}^{n} + c_{3}{z_{3}}^{n} + \ldots y[n]=c1z1n+c2z2n+c3z3n+

系统稳定的极点判据:若单位脉冲响应中的各个模态都是收敛的,系统单位脉冲响应也是收敛的,而模态收敛的条件取决于极点的模长(并不是系数的模长 A i A_{i} Ai,是极点 Z i Z_{i} Zi的模长),模长小于1,收敛,即:极点都在单位圆内,那么系统必定是稳定的。

对于FIR滤波器,其极点始终在原点,不存在复指数模态,其单位脉冲响应是有限的,必定稳定。

零点:系统对零点所代表的复指数信号响应为0。

对于FIR滤波器,其极点始终在原点,不存在复指数模态,其单位脉冲响应是有限的,必定稳定。

滤波器基本介绍

FIR滤波器

差分方程

y [ n ] = 0.17 x [ n ] + 0.27 x [ n − 1 ] + 0.28 x [ n − 2 ] + 0.27 x [ n − 3 ] + 0.17 x [ n − 4 ] y\left\lbrack n \right\rbrack = 0.17x\left\lbrack n \right\rbrack + 0.27x\left\lbrack n - 1 \right\rbrack + 0.28x\left\lbrack n - 2 \right\rbrack + 0.27x\lbrack n - 3\rbrack + 0.17x\lbrack n - 4\rbrack y[n]=0.17x[n]+0.27x[n1]+0.28x[n2]+0.27x[n3]+0.17x[n4]

初始条件:初始松弛

特点:

(1)仅是输入及其移位的线性组合,不包含输出的滞后项,即:输出不会再反馈回系统;

(2)N阶滤波器有(N+1)个系数,系数呈对称性;

(3)单位脉冲响应的项数有限(必定是稳定的);

(4)容易实现线性相位。(线性相位是指系统对不同频率信号的相位变换与该输入信号的频率成线性关系。若系统有线性相位特性,不同频率信号组合后经过系统,其波形不会发生失真,仅是存在时间滞后)

IIR滤波器

差分方程

y [ n ] − 0.78 y [ n − 1 ] + 0.68 y [ n − 2 ] − 0.18 y [ n − 3 ] + 0.03 y [ n − 4 ] y\left\lbrack n \right\rbrack - 0.78y\left\lbrack n - 1 \right\rbrack + 0.68y\left\lbrack n - 2 \right\rbrack - 0.18y\left\lbrack n - 3 \right\rbrack + 0.03y\left\lbrack n - 4 \right\rbrack y[n]0.78y[n1]+0.68y[n2]0.18y[n3]+0.03y[n4]

= 0.05 x [ n ] + 0.19 x [ n − 1 ] + 0.28 x [ n − 2 ] + 0.19 x [ n − 3 ] + 0.05 x [ n − 4 ] = 0.05x\left\lbrack n \right\rbrack + 0.19x\left\lbrack n - 1 \right\rbrack + 0.28x\left\lbrack n - 2 \right\rbrack + 0.19x\lbrack n - 3\rbrack + 0.05x\lbrack n - 4\rbrack =0.05x[n]+0.19x[n1]+0.28x[n2]+0.19x[n3]+0.05x[n4]

初始条件:初始松弛

特点:

(1)包含输出反馈项,差分方程的左边是输出及其移位的线性组合,右边是输入及其移位的线性组合;

(2)N阶滤波器有(N+1)个系数,输入项前面的系数也呈对称性;

(3)单位脉冲响应的项数无限(极点的分布决定滤波器稳定性);

(4)无法保证线性相位。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值