基于CORDIC算法的DDS实现

本文详细介绍了基于CORDIC算法的直接数字式频率合成器(DDS)的工作原理,包括其特点、使用CORDIC算法进行角度旋转的方法以及MATLAB和RTL硬件实现的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于CORDIC算法的DDS实现

原理

直接数字式频率合成器DDS(Direct Digital Synthesizer),实际上是一种分频器:通过编程频率控制字来分频系统时钟(SYSTEM CLOCK)以产生所需要的频率。DDS有两个突出的特点,一方面,DDS工作在数字域,一旦更新频率控制字,输出的频率就相应改变,其跳频速率高;另一方面,由于频率控制字的宽度宽(48bit或者更高),频率分辨率高。

CORDIC算法是一种迭代算法,它通过一系列简单的加法、减法、位移等操作来计算三角函数、双曲函数等复杂函数。

在xy坐标平面上将点( x 1 , y 1 x_{1,}y_{1} x1,y1)旋转 θ \theta θ角度到点( x 2 , y 2 x_{2,}y_{2} x2,y2)的标准方法如下所示:

x 2 = x 1 cos ⁡ θ − y 1 sin ⁡ θ x_{2} = x_{1}\cos\theta - y_{1}\sin\theta x2=x1cosθy1sinθ

y 2 = y 1 sin ⁡ θ + y 1 cos ⁡ θ y_{2} = y_{1}\sin\theta + y_{1}\cos\theta y2=y1sinθ+y1cosθ

![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=media%2Fimage1.png&pos_id=img-UWyyzWGS-1705737458423){width="2.5000174978127734in"
height="1.8896095800524935in"}

这被称为是平面旋转、向量旋转或线性(矩阵)代数中的Givens旋转。

通过提出因子 cos ⁡ θ \cos\theta cosθ,方程可写为下面的形式:

x 2 = x 1 cos ⁡ θ − y 1 sin ⁡ θ = c o s θ ( x 1 − y 1 t a n θ ) x_{2} = x_{1}\cos\theta - y_{1}\sin\theta = cos\theta(x_{1} - y_{1}tan\theta) x2=x1cosθy1sinθ=cosθ(x1y1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值