【HDU】1010Tempter of the Bone【dfs+剪枝】

该博客介绍了如何解决HDU 1010题目的方法,指出仅使用深度优先搜索(DFS)会导致超时,需要通过剪枝策略进行优化。博主提供了包含变态数据的示例,例如6x6的矩阵,以及最终得出'NO'的结果,强调了剪枝在算法效率提升中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单纯用dfs会超时

要用剪枝优化

提供一组变态数据

6 6 37
S.....
......
......
......
......
D.....
NO

#include<bits/stdc++.h>
#include<cstring>
using namespace std;

struct node{
    int x,y;
};
int N,M,T;
char mp[8][8];
node Begin,End;
int dir[4][2]={ {1,0},{-1,0},{0,1},{0,-1} };
bool Tap=false;

bool OutBorder(int x,int y){
    if(x<0||x>=N||y<0||y>=M)
        return true;
    return false;
}

int OddOrEven(int x,int y){
    return abs(x-End.x)+abs(y-End.y);
}

void dfs(int x,int y,int t){
    if(Tap)
        return ;
    //printf("X: %d  Y:%d t: %d\n",x,y,t);
    int temp=OddOrEven(x,y);
    temp=T-t-temp;
    if( temp<0 ||temp&1 || t>T)
        return ;
    if(t==T&&x==End.x&&y==End.y){
        Tap=true;
        return ;
    }
    for(int i=0;i<4;i++){
        int cur_x=x+dir[i][0];
        int cur_y=y+dir[i][1];
        if(!OutBorder(cur_x,cur_y)&&(mp[cur_x][cur_y]!='X')){
            mp[cur_x][cur_y]='X';
            dfs(cur_x,cur_y,t+1);
            mp[cur_x][cur_y]='.';
            if(Tap)
                return ;
        }
    }
}
//6 6 37
//S.....
//......
//......
//......
//......
//D.....
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    while(cin>>N>>M>>T,N&&M&&T){
        Tap=false;
        int cnt=0;
        for(int i=0;i<N;i++){
            cin>>mp[i];
            for(int j=0;j<M;j++){
                if(mp[i][j]=='D')   End.x=i,End.y=j;
                else if(mp[i][j]=='S')   Begin.x=i,Begin.y=j;
                else if(mp[i][j]=='X')  cnt++;
            }
        }
        if(N*M-cnt<=T)
            Tap=false;
        else{
            mp[Begin.x][Begin.y]='X';
            dfs(Begin.x,Begin.y,0);
        }printf("%s\n",Tap==true?"YES":"NO");
    }
}

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值