目录
一、练习数据
7369 SMITH CLERK 7902 1980-12-17 00:00:00 800.00 20
7499 ALLEN SALESMAN 7698 1981-02-20 00:00:00 1600.00 300.00 30
7521 WARD SALESMAN 7698 1981-02-22 00:00:00 1250.00 500.00 30
7566 JONES MANAGER 7839 1981-04-02 00:00:00 2975.00 20
7654 MARTIN SALESMAN 7698 1981-09-28 00:00:00 1250.00 1400.00 30
7698 BLAKE MANAGER 7839 1981-05-01 00:00:00 2850.00 30
7782 CLARK MANAGER 7839 1981-06-09 00:00:00 2450.00 10
7788 SCOTT ANALYST 7566 1987-04-19 00:00:00 1500.00 20
7839 KING PRESIDENT 1981-11-17 00:00:00 5000.00 10
7844 TURNER SALESMAN 7698 1981-09-08 00:00:00 1500.00 0.00 30
7876 ADAMS CLERK 7788 1987-05-23 00:00:00 1100.00 20
7900 JAMES CLERK 7698 1981-12-03 00:00:00 950.00 30
7902 FORD ANALYST 7566 1981-12-03 00:00:00 3000.00 20
7934 MILLER CLERK 7782 1982-01-23 00:00:00 1300.00 10
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
1、准备数据:
[hdp@hdp02 demo]$ vi emp.txt
[hdp@hdp02 demo]$ vi dept.txt
[hdp@hdp02 demo]$ hive
-- 员工表
hive> CREATE TABLE emp(
empno INT comment "-员工表编号",
ename STRING comment '员工姓名',
job STRING comment '职位类型',
mgr INT comment '领导编号' ,
hiredate TIMESTAMP comment '雇佣日期',
sal DECIMAL(7,2) comment '工资',
comm DECIMAL(7,2) comment '奖金',
deptno INT comment '部门编号'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";
-- 导入数据
hive> load data local inpath '/home/hdp/demo/emp.txt' into table emp;
-- 部门表
hive> create table dept (
deptno INT comment '部门编号',
dname STRING comment '部门名称',
loc STRING comment '部门所在的城市'
)row format delimited fields terminated by '\t';
-- 导入数据
hive> load data local inpath '/home/hdp/demo/dept.txt' into table dept;
-- 动态分区表
-- 开启动态分区
hive> set hive.exec.dynamic.partition = true;
hive> set hive.exec.dynamic.partition.mode = nonstrict;
-- 创建分区表
hive> CREATE EXTERNAL TABLE emp_ptn(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2)
)PARTITIONED BY (deptno INT) -- 按照部门编号进行分区
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";
-- 往分区表导入数据
hive> insert into table emp_ptn partition(deptno)
select empno,ename,job,mgr,hiredate,sal,comm,deptno from emp;
hive> show partitions emp_ptn; -- 查看分区
注意:hive的select ...不支持一下类型
- 1、非等值连接
- 2、or类型的多条件连接
- 3、默认情况下笛卡尔积不支持
二、单表查询
0、查看当前数据库
SELECT current_database();
1、全表扫描查询
select * from emp;
select * from dept;
select * from emp_ptn;
2、where 条件查询
-- 查询 10 号部门中员工编号大于 7782 的员工信息
select * from emp_ptn where deptno = 10 and empno > 7782;
3、DISTINCT 去重
-- 查询所有工作类型
select distinct job from emp;
4、分区查询
-- 查询分区表中部门编号在[20,30]之间的员工(不用全表扫描,会快很多)
select emp_ptn.* from emp_ptn
where emp_ptn.deptno >=20 and emp_ptn.deptno <=30;
5、LIMIT 使用
-- 查询薪资最高的 5 名员工
select * from emp order by sal desc limit 5;
6、GROUP BY 分组聚合
-- 查询各个部门薪酬总和,平均薪资
select deptno,sum(sal),avg(sal) from emp group by deptno;
7、HAVING 对分组数据进行过滤
-- 查询工资总和大于 9000 的所有部门
select deptno,sum(sal) from emp
group by deptno having sum(sal)>9000;
8、Order by 或者 Sort by 排序
- 使用 ORDER BY 时会有一个 Reducer 对全部查询结果进行排序,可以保证数据的全局有序性;
- 使用 SORT BY 时只会在每个 Reducer 中进行排序,这可以保证每个 Reducer 的输出数据是有序的,但不能保证全局有序。
由于 ORDER BY 的时间可能很长,如果你设置了严格模式 (hive.mapred.mode = strict),则其后面必须再跟一个 limit
子句。
注 :hive.mapred.mode 默认值是 nonstrict ,也就是非严格模式
9、distribute by 把具有相同 Key 值的数据分发到同一个 Reducer 进行处理(主要应用于分桶查询/插入)
- 默认情况下,MapReduce 程序会对 Map 输出结果的 Key 值进行散列,并均匀分发到所有 Reducer 上。如果想要把具有相同 Key 值的数据分发到同一个 Reducer 进行处理,这就需要使用 DISTRIBUTE BY 字句。
- 需要注意的是,DISTRIBUTE BY 虽然能保证具有相同 Key 值的数据分发到同一个 Reducer,但是不能保证数据在 Reducer 上是有序的。情况如下:
把以下 5 个数据发送到两个 Reducer 上进行处理:
k1 k2 k4 k3 k1
Reducer1 得到如下乱序数据:
k1 k2 k1
Reducer2 得到数据如下:
k4 k3
如果想让 Reducer 上的数据时有序的,可以结合 SORT BY
使用 (示例如下),或者使用下面我们将要介绍的 CLUSTER BY。
-- 将数据按照部门分发到对应的 Reducer 上处理
SELECT empno, deptno, sal FROM emp DISTRIBUTE BY deptno SORT BY deptno ASC;
10、 cluster by(主要应用于分桶查询/插入)
如果 SORT BY
和 DISTRIBUTE BY
指定的是相同字段,且 SORT BY 排序规则是 ASC,此时可以使用 CLUSTER BY
进行替换,同时 CLUSTER BY
可以保证数据在全局是有序的。
-- 将数据按照部门分发到对应的 Reducer 上处理
SELECT empno, deptno, sal FROM emp CLUSTER BY deptno ;
三、多表连接查询
需要特别强调:JOIN 语句的关联条件必须用 ON 指定,不能用 WHERE 指定,否则就会先做笛卡尔积,再过滤,这会导致你得不到预期的结果。
1、[inner] join ... on... 内连接
语法:SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)...;
-- 内连接
select * from emp
join dept on emp.deptno=dept.deptno;
2、LEFT [OUTER] JOIN... on ...左连接
-- 左连接
select * from emp
left join dept on emp.deptno=dept.deptno;
-- 左表独有连接
select * from emp t1
LEFT JOIN dept t2 ON t1.deptno = t2.deptno where t2.deptno is null;
3、RIGHT [OUTER] JOIN... on ...右连接
--右连接
select e.*,d.* from emp e
right join dept d on e.deptno = d.deptno;
-- 右表独有
select * from emp t1
right join dept t2 on t1.deptno = t2.deptno where t1.deptno is null;
4、FULL [OUTER] JOIN ...on ... 全连接
SELECT e.*,d.* FROM emp e
FULL JOIN dept d ON e.deptno = d.deptno;
select * from emp t1 LEFT JOIN dept t2 ON t1.deptno = t2.deptno where t2.deptno is null
union
select * from emp t1 right join dept t2 on t1.deptno = t2.deptno where t1.deptno is null;
5、LEFT SEMI JOIN
LEFT SEMI JOIN (左半连接)是 IN/EXISTS 子查询的一种更高效的实现。
- JOIN 子句中右边的表只能在 ON 子句中设置过滤条件;
- 查询结果只包含左边表的数据,所以只能 SELECT 左表中的列。
-- 查询在纽约办公的所有员工信息
SELECT emp.*
FROM emp LEFT SEMI JOIN dept
ON emp.deptno = dept.deptno AND dept.loc="NEW YORK";
--上面的语句就等价于
SELECT emp.* FROM emp
WHERE emp.deptno IN (SELECT deptno FROM dept WHERE loc="NEW YORK");
6、JOIN 严格模式下 (hive.mapred.mode = strict)不支持笛卡尔积连接
笛卡尔积连接,这个连接日常的开发中可能很少遇到,且性能消耗比较大,基于这个原因,如果在严格模式下 (hive.mapred.mode = strict),Hive 会阻止用户执行此操作。
SELECT * FROM emp JOIN dept;(严格模式下不支持)
四、综合练习题
1、查询总员工数
select count(distinct empno) from emp;
2、查询总共有多少个职位
select count(distinct job) from emp;
3、统计每个职位有多少个员工,并且按照数量从大到小排序
select job,count(distinct empno) c from emp
group by job order by c desc;
4、查询入职最早的员工
select * from emp join dept on emp.deptno=dept.deptno
where emp.hiredate in (select min(hiredate) from emp);
5、统计出每个岗位的最高工资和平均工资
select job,max(sal) m_sal,round(avg(sal),2) av_sal from emp group by job;
6、查询出每个地区工资最高的员工
select a.loc,emp.* from emp join
(select dept.loc loc,dept.deptno deptno,max(emp.sal) m_sal
from emp join dept on emp.deptno=dept.deptno
group by dept.loc,dept.deptno) a
on emp.deptno=a.deptno and emp.sal=a.m_sal;
7、查询上半年入职员工最多的地区
select loc,a.m from dept join
(select deptno,count(substr(hiredate,6,2)) m from emp
where substr(hiredate,6,2)<=6
group by deptno
order by m desc
limit 1) a
on dept.deptno = a.deptno;
五、查询优化
1、本地模式
在上面演示的语句中,大多数都会触发 MapReduce, 少部分不会触发,比如 select * from emp limit 5
就不会触发 MR,此时 Hive 只是简单的读取数据文件中的内容,然后格式化后进行输出。在需要执行 MapReduce 的查询中,你会发现执行时间可能会很长,这时候你可以选择开启本地模式。
--本地模式默认关闭,需要手动开启此功能 SET hive.exec.mode.local.auto=true;
启用后,Hive 将分析查询中每个 map-reduce 作业的大小,如果满足以下条件,则可以在本地运行它:
- 作业的总输入大小低于:hive.exec.mode.local.auto.inputbytes.max(默认为 128MB);
- map-tasks 的总数小于:hive.exec.mode.local.auto.tasks.max(默认为 4);
- 所需的 reduce 任务总数为 1 或 0。
因为我们测试的数据集很小,所以你再次去执行上面涉及 MR 操作的查询,你会发现速度会有显著的提升。
2、STREAMTABLE
在多表进行联结的时候,如果每个 ON 字句都使用到共同的列(如下面的 b.key
),此时 Hive 会进行优化,将多表 JOIN 在同一个 map / reduce 作业上进行。同时假定查询的最后一个表(如下面的 c 表)是最大的一个表,在对每行记录进行 JOIN 操作时,它将尝试将其他的表缓存起来,然后扫描最后那个表进行计算。因此用户需要保证查询的表的大小从左到右是依次增加的(先小后大)。
`SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key) JOIN c ON (c.key = b.key)`
然后,用户并非需要总是把最大的表放在查询语句的最后面,Hive 提供了 /*+ STREAMTABLE() */
标志,用于标识最大的表,示例如下:
SELECT /*+ STREAMTABLE(d) */ e.*,d.* FROM emp e JOIN dept d ON e.deptno = d.deptno WHERE job='CLERK';
3、 MAPJOIN
如果所有表中只有一张表是小表,那么 Hive 把这张小表加载到内存中。这时候程序会在 map 阶段直接拿另外一个表的数据和内存中表数据做匹配,由于在 map 就进行了 JOIN 操作,从而可以省略 reduce 过程,这样效率可以提升很多。Hive 中提供了 /*+ MAPJOIN() */
来标记小表,示例如下:
SELECT /*+ MAPJOIN(d) */ e.*,d.* FROM emp e JOIN dept d ON e.deptno = d.deptno WHERE job='CLERK';