class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric=’euclidean’, metric_params=None, algorithm=’auto’, leaf_size=30, p=None, n_jobs=None)
参数: | eps : float,可选 两个样本之间的最大距离,一个被认为是另一个样本的邻域。这不是群集中点的距离的最大界限。这是为您的数据集和距离函数选择适当的最重要的DBSCAN参数。 min_samples : int,可选 对于要被视为核心点的点,邻域中的样本数(或总权重)。这包括点本身。 metric : string或callable 计算要素数组中实例之间距离时使用的度量标准。如果metric是字符串或可调用的,则它必须是 版本0.17中的新功能:度量预先计算以接受预先计算的稀疏矩阵。 metric_params : dict,可选 度量函数的其他关键字参数。 版本0.19中的新功能。 algorithm : {'auto','ball_tree','kd_tree','brute'},可选 NearestNeighbors模块用于计算逐点距离并找到最近邻居的算法。有关详细信息,请参阅NearestNeighbors模块文档。 leaf_size : int,optional(默认值= 30) 叶子大小传递给BallTree或cKDTree。这可能会影响构造和查询的速度,以及存储树所需的内存。最佳值取决于问题的性质。 p : float,可选 用于计算点之间距离的Minkowski度量的功效。 n_jobs : int或None,可选(默认=无) 要运行的并行作业数。 |
---|