信息基础2
Sylvia_zsh
这个作者很懒,什么都没留下…
展开
-
信息基础2 - homework2
查阅相关知识: 1.希腊字母发音(背诵…) 维基百科 2.方向的数学定义 ?????????????????????????????? 3.证明中心极限定理 维基百科 中心极限定理是概率论中的一组定理。中心极限定理说明,在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。 中心极限定...原创 2018-11-09 15:16:04 · 170 阅读 · 0 评论 -
信息基础2 - homework1
查阅相关知识: 线性赋范空间: 一个生动的链接 图的定义(数据结构) 激活函数 R^n的紧致子集 《无限逼近理论》(为什么认为神经网络就那样了) x1 ~ x6,n1 ~ n9,y0 ~ y4,写输出公式 ...原创 2018-11-05 20:52:23 · 276 阅读 · 0 评论 -
信息基础2 - homework3
周斌老师分享:LeNet-5 手写数字识别-网络展示 怎样提升深度学习的性能? 1.LeNet-5中卷积核3×3和5×5的对比 LeNet-5 Keras 实现 实验要求不能调用现成的库函数,要从用for循环加乘实现卷积开始。 相当于自己写库函数,以后可以调用自己的库。 2.初始化参数能否都为0? 知乎:为什么神经网络参数不能全部初始化为全0 通过反向传播后,输入层与隐藏层之间...原创 2018-11-15 23:47:48 · 277 阅读 · 0 评论 -
fisher变换 + rank SVM
维基:fisher变换 图像处理之基础---特征向量的几何意义 基于K-L变换和Fisher线性判别线性判别的的人脸图像识别 +++ 特征提取 Fisher判别法 Fisher线性判别分析(Linear Discriminant Analysis,LDA) LDA(线性判别分析或称Fisher线性判别)PCA(主成分分析)代码及表情识别中的应用 +++ 线性判别分析(Linear...转载 2018-11-23 19:59:20 · 667 阅读 · 0 评论 -
信息基础2 - Selective Search
知乎:Selective Search 知乎:Selective Search 基于图的分割 Efficient Graph-Based Image Segmentation 论文详解 scikit-image开发者手册 :Felsenszwalb基于有效图的图像分割 scikit-image/skimage/segmentation/_felzenszwalb.py 源码...转载 2018-11-26 19:53:40 · 258 阅读 · 0 评论 -
信息基础2 - homework5 mAP
目标检测中的mAP是什么含义? - 陳子豪的回答 - 知乎 目标检测中的mAP是什么含义? - 知乎用户的回答 - 知乎 mAP定义及相关概念 mAP: mean Average Precision, 即各类别AP的平均值 AP: PR曲线下面积,后文会详细讲解 PR曲线: Precision-Recall曲线 Precision: TP / (TP + FP) Recall:...转载 2018-12-04 19:46:24 · 180 阅读 · 0 评论 -
信息基础2 - homework6
显式方法与隐式方法: 显式求解 对时间进行差分,不存在迭代和收敛问题,最小时间步取决于最小单元的尺寸。 求解的递推公式用显式方程表示,如a(n)=a(n-1)+b(n-1),后一次迭代可以由前一次直接求解 隐式求解 和时间无关,采用的是牛顿迭代法(线性问题就直接求解线性代数方程组),因此存在一个迭代收敛问题,不收敛就的不到结果。 求解的递推公式用映射方程表示,如a(n)=a(n-1)+f...转载 2018-12-10 11:20:24 · 155 阅读 · 0 评论 -
BP:矩阵求导
知乎:如何理解矩阵对矩阵求导 affine/linear(仿射/线性)变换函数详解及全连接层反向传播的梯度求导 简书:机器学习-矩阵求导 5分钟学会矩阵求导 矩阵求导计算法则 例题 矩阵求导公式 矩阵求导总结 Optimizing RNN performance 反向传播原理 & 卷积层backward实现<一> 反向传播之六:CNN 卷积层反向传播 ...转载 2018-12-27 14:07:57 · 505 阅读 · 0 评论