天下没有免费的午餐

在机器学习中存在一个普适定理--没有免费的午餐(No Free Lunch Theorem,NFL定理)。NFL定理的具体描述为

1)对所有可能的的目标函数求平均,得到的所有学习算法的“非训练集误差”的期望值相同;

2)对任意固定的训练集,对所有的目标函数求平均,得到的所有学习算法的“非训练集误差”的期望值也相同;

3)对所有的先验知识求平均,得到的所有学习算法的的“非训练集误差”的期望值也相同;

4)对任意固定的训练集,对所有的先验知识求平均,得到的所有学习算法的的“非训练集误差”的期望值也相同;

  NFL定理表明没有一个学习算法可以在任何领域总是产生最准确的学习器。不管采用何种学习算法,至少存在一个目标函数,能够使得随机猜测算法是更好的算法。

  平常所说的一个学习算法比另一个算法更“优越”,效果更好,只是针对特定的问题,特定的先验信息,数据的分布,训练样本的数目,代价或奖励函数等。

  NFL定理可以进一步的引出一个普适的“守恒率”--对每一个可行的学习算法来说,它们的性能对所有可能的目标函数的求和结果确切地为零。即我们要想在某些问题上得到正的性能的提高,必须在一些问题上付出等量的负的性能的代价!比如时间复杂度和空间复杂度。

  实际上,NFL定理并不是局限在机器学习领域,在我们所处的现在这个已知的宇宙中,NFL定理也总是成立的,就像能量守恒。

原文:https://blog.csdn.net/victor0127/article/details/48207547 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值