自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 关于我们:分析101

“分析”是一个古老的概念,并且内涵非常广,在各个领域都有相关的应用。我们团队的成员,是来自数学、计算机科学、经济学、商学、医学等不同领域的科学研究工作者,在日常的研究工作中,“分析”是我们共同的工具。尽管分析的具体细节可以因学科而异,但思维逻辑、基本工具却是跨领域共通的。建立本号的初衷,就是为了做一些对万事万物的有趣分析。除此之外,我们也会有许多其他的内容,包括对分析工具的介绍,主要集中于数据分析的工具,如机器学习等;对书籍、前沿文献的解读与评论;对一些问题(主要来自学生提问)的解答;对一些知

2021-07-13 16:23:50 137

原创 将sas7bdat转为csv

将sas7bdat转换为csv

2022-06-07 20:58:51 1788 1

原创 陈希孺概率与数统:入门级自学佳作

许多同学进入大学的学习后,由于会对数学的学习束手无策。

2021-10-12 09:28:02 872

原创 依分布收敛的定义细节

1 定义依分布收敛的定义是这样的:随机变量序列{Xn}n=1∞\{X_n\}_{n=1}^{\infty}{Xn​}n=1∞​,若它们的累积分布函数cdf序列{F1}n=1∞\{F_1\}_{n=1}^{\infty}{F1​}n=1∞​,与某个随机变量XXX的cdf FFF,满足lim⁡n→∞Fn(x)=F(x)\lim_{n\to\infty} F_n(x)=F(x)n→∞lim​Fn​(x)=F(x)在任意F(x)F(x)F(x)的连续点xxx处都成立。则称它们依分布收敛到随机变量XXX,记

2021-09-28 12:56:55 2397

原创 新系列预告:资料评论与推荐

新栏目预告:以后会推荐一些书、Notes、公开课、演讲等,当然,还是以专业内容为主。主要聚焦的专业内容主要包括:以数据科学作为中心,它的底层理论(数学、统计学等),它的应用工具(机器学习等),它的具体应用(社会科学、生命科学等)。对于推荐的内容,我们设计了一个6维打分体系如下,基准是低年级非数学系本科生,学好数学三件套(微积分、线性代数、概率论与数理统计)的水平。专业性:指是否面向专业读者。★☆☆☆☆:面向最大众的科普性著作,完全不需要任何基础知识;★★★☆☆:专业领域的基础内容,一般会放在大二

2021-08-18 15:47:24 144

原创 Jensen不等式及其应用

Jensen不等式的形式非常多,这里关注有关于期望的形式。1 Jensen不等式Jensen不等式:已知函数ϕ:R→R\phi: \mathbb{R}\to\mathbb{R}ϕ:R→R为凸函数,则有ϕ[E(X)]≤E[ϕ(X)]\phi[\text{E}(X)]\leq \text{E}[\phi(X)]ϕ[E(X)]≤E[ϕ(X)]。证明过程很直接,因为ϕ:R→R\phi: \mathbb{R}\to\mathbb{R}ϕ:R→R为凸函数,所以存在线性函数l:R→Rl: \mathbb{R}\to

2021-08-12 20:14:27 1110

原创 CSDN1周年

公众号建立已经1周年了。过去1年由我们几位科研从业人员的一次聊天开始,到付诸行动,再到合作形式的几次探索,这一年经历了许多。现在,公众号开始有了一点点的粉丝数(可以说是原始粉丝了),我们也有了稳定的合作模式。这一年,我们共发布了48篇原创内容,平均约7.6天发布一篇原创内容,受到16次点赞,4条评论,40次收藏。另外,也得到了8,772次访问,排在48,463名,也收获了8位粉丝的关注。未来未来,我们将继续现在的路线,以专业性文章为主,适度更新一些其他的内容。另外,我们计划推出一个全新的系列

2021-08-09 12:31:45 335

原创 最小角回归详解

本文介绍LAR(Least angle regression,最小角回归),由Efron等(2004)提出。这是一种非常有效的求解LASSO的算法,可以得到LASSO的解的路径。1 算法介绍我们直接看最基本的LAR算法,假设有NNN个样本,自变量是ppp维的:先对XXX(N×pN\times pN×p)做标准化处理,使得每个predictor(XXX的每列)满足x⋅j′1N=0x_{\cdot j}' 1_N=0x⋅j′​1N​=0,∥x⋅j∥=1\Vert x_{\cdot j}\Vert=1∥x

2021-06-29 17:33:37 1175 1

原创 QR分解与线性回归

1 一元回归与多元回归任何一本初级水平的计量经济学、统计学或机器学习相关书籍,都会详细推导多元线性线性回归的解,在这里就不再赘述。我们给出本文用到的一些设定。yyy为NNN维因变量向量,假设y=Xβ+ϵy=X\beta+\epsilony=Xβ+ϵ,如果自变量为ppp维,将XXX排为N×(p+1)N\times (p+1)N×(p+1)矩阵,其中第一列x⋅0=1Nx_{\cdot 0}=1_Nx⋅0​=1N​为全是111的截距项,我们有最小二乘估计:β^=(X′X)−1X′y\hat \beta =

2021-06-24 17:39:11 788

原创 Curse of Dimensionality

1 Curse of dimensionality我们知道,kkk-NN算法是一种非常简单又很有效果的算法,它的核心思想就是局部近似。究其原因,就是因为它可以很好地对条件期望进行近似,一方面它用样本均值代替了期望,另一方面它用给定某个点的邻域代替了该点,结合起来,就是用在邻域内的样本均值,取代了在该点处的条件期望。但是,在高维问题中,kkk-NN会逐渐变得无效。为什么?还要从高维问题的一些特点说起。首先,高维空中的样本,分布非常稀疏。假设有一个单位体积的超立方体(hypercube),即每个维度的“边

2021-06-22 16:06:49 170

原创 LASSO的解法

LASSO非常实用,但由于它的惩罚项不可以常规地进行求导,使得很多人以为它无法显式地求解出解析解。但其实并不是这样的。1 单变量情形:软阈值法将NNN个样本的真实值记为NNN维向量yyy,将NNN个样本的自变量记为zzz,假设我们已经将自变量做过标准化,即z′ℓn=0z' \ell_n=0z′ℓn​=0,z′z/N=1z'z/N=1z′z/N=1,这也意味着在LASSO模型中截距项为000。系数β\betaβ是要优化的参数,惩罚项参数为λ>0\lambda\gt 0λ>0。LASSO就是要

2021-06-17 15:55:19 1807

原创 经验分布函数简介

1 概念如果我们想知道某个随机变量XXX的分布FFF,这在一般情况下当然是无法准确知道的,但如果我们手上有它的一些独立同分布的样本,可不可以利用这些样本?一个很简单的办法就是,把这些样本的“频率”近似为随机变量的“概率”。经验分布函数(empirical distribution function):给每个点1/n1/n1/n的概率质量,得到CDF:F^n(x)=∑i=1nI(Xi≤x)n\hat{F}_n(x) = \dfrac{\sum_{i=1}^{n}I(X_i\leq x)}{n}F^n

2021-06-15 14:17:48 7418

原创 Hoeffding不等式简介

1 Hoeffding不等式Hoeffding不等式是非常有用的一个不等式,在机器学习、统计学等领域,都发挥着巨大的作用。它的思想与Markov不等式有些类似,我们先给出它的形式:Hoeffding不等式:Y1,…,YnY_1,\ldots,Y_nY1​,…,Yn​为独立观测,E(Yi)=0E(Y_i)=0E(Yi​)=0,ai≤Yi≤bia_i\leq Y_i\leq b_iai​≤Yi​≤bi​。对于ϵ>0\epsilon\gt 0ϵ>0,∀t>0\forall t \gt 0∀

2021-06-14 19:33:30 1002

原创 正态分布密度函数的系数

正态分布的密度函数,可以一般化地写为f(x)=kexp⁡[−12(x−b)′A(x−b)]f(x) = k \exp\left[-\dfrac{1}{2}(x-b)' A (x-b)\right]f(x)=kexp[−21​(x−b)′A(x−b)]事实上,如果某个多维随机变量的密度函数可以写成该形式,那么它就服从正态分布。其中bbb是均值,正定矩阵AAA是协方差矩阵的逆,它们共同决定了正态分布的形式。而另外一个字母kkk,仅仅是归一化系数,它是使得整个密度函数的积分等于111的那个值。如果有人背

2021-06-10 23:21:06 1566

原创 条件期望误差的有限性

1 CEF error的有限性问题在回归中,记条件期望函数(conditional expectation function,CEF)为E[Y∣X=x]E[Y|X=x]E[Y∣X=x],则可将因变量YYY分解为Y=E[Y∣X=x]+eY=E[Y|X=x]+eY=E[Y∣X=x]+e可记e=Y−E[Y∣X=x]e=Y-E[Y|X=x]e=Y−E[Y∣X=x]为条件期望函数误差(CEF error)。显然,eee满足E[e∣X]=0E[e|X]=0E[e∣X]=0,E[e]=0E[e]=0E[e]=

2021-06-05 13:23:47 516

原创 数学基础系列:极限与连续

1 实数线的拓扑我们先从探讨“距离”的概念出发。我们知道对于x,y∈Rx,y\in Rx,y∈R,可以定义一个非负的Euclidean distance∣x−y∣|x-y|∣x−y∣。通过这个,我们又可以定义某个点x∈Rx\in Rx∈R的ε\varepsilonε-neighbourhood,它就是集合S(x,ε)={y:∣x−y∣<ε}S(x,\varepsilon)=\{y:|x-y|\lt \varepsilon\}S(x,ε)={y:∣x−y∣<ε},其中ε>0\varepsi

2021-06-02 13:33:22 1130

原创 数学基础系列:集合与数

本文旨在整理一些集合论中的基础概念与定理,主要出处见参考文献。本文只列出特别简单的证明,略去复杂的证明。1 集合论基础首先,我们介绍Cartesian product(笛卡尔积、直积)A×BA\times BA×B,就是从AAA中、BBB中各取一个元素组成的有序数对。如果是nnn个集合,它们的Cartesian product就是一个nnn-tuples:×i=1nAi={(a1,…,an):ai∈Ai,i=1,…,n}\times_{i=1}^n A_i = \{(a_1,\ldots,a_n)

2021-05-25 00:30:56 537

原创 因子模型简介

总体kkk-因子模型模型设定:x∼(μ,Σ)x\sim(\mu,\Sigma)x∼(μ,Σ),rank(Σ)=r\text{rank}(\Sigma)=rrank(Σ)=r,固定k<rk\lt rk<r,则kkk因子模型的设定为x=Af+μ+ϵx=Af+\mu+\epsilonx=Af+μ+ϵ其中fff为ddd维随机向量,称为共同因子(common factor),AAA为d×kd\times kd×k的线性变换,称为因子载荷(factor loading)。一般会做出这些假设:f∼

2021-05-18 21:13:36 2447

原创 数据标准化

1 为何需要标准化有的数据,不同维度的数量级差别较大,导致有的维度会主导整个分析过程。如下图所示:该图的数据维度d=30d=30d=30,样本量n=40n=40n=40,上面的图是对原始数据做PCA后,第一个PC在各个维度上的权重的平行坐标图,下面的图则是对数据做标准化之后的情况。可以发现,在原始数据中,第444和242424个维度的权重非常大。如果其他的维度也包含了重要的信息,而我们只取第一个PC做研究,可能就会造成信息损失。2 如何标准化那该如何预处理数据?一般而言有两种处理方法。2.1 S

2021-05-17 19:32:55 599

原创 主成分分析简介

本文对主成分分析做简要介绍。1 总体的主成分考虑x∼(μ,Σ)x\sim (\mu,\Sigma)x∼(μ,Σ),其中Σ\SigmaΣ可分解为Σ=ΓΛΓ′\Sigma=\Gamma\Lambda\Gamma'Σ=ΓΛΓ′,Γ=(η1,…,ηn)\Gamma=(\eta_1,\ldots,\eta_n)Γ=(η1​,…,ηn​),各列为单位特征向量,Λ\LambdaΛ为特征值降序排列的对角矩阵,协方差矩阵的秩rank(Σ)=r\text{rank}(\Sigma)=rrank(Σ)=r,对于k=1,…,r

2021-05-16 18:05:33 447

原创 平行坐标图简介

高维数据的可视化是一个很大的问题,Inselberg(1985)提出了一种好办法,称为平行坐标图(parallel coordinate plots)。它有竖直的(vertical)和水平的(horizontal)两种画法。Vertical parallel coordinate plots:对于一个ddd维的样本,它的值是一个随机向量X=(X1,X2,…,Xd)′X=(X_1,X_2,\ldots,X_d)'X=(X1​,X2​,…,Xd​)′,不断在坐标系中描出点(X1,1)(X_1,1)(X1​,1

2021-05-14 12:05:35 1103

原创 连续时间下的一般资产定价模型

上一篇讲了资产定价的核心等式,以及随机贴现因子SDF的一些知识,但是是在离散时间下做的推导,而有时为了研究的方便,需要在连续时间下进行建模,本文对此进行介绍。在连续时间下,假设投资者的效用函数为U({ct})=E[∫t=0∞e−δtu(ct)dt]U(\{c_t\})=\text{E}\left[\int_{t=0}^{\infty}e^{-\delta t}u(c_t) dt\right]U({ct​})=E[∫t=0∞​e−δtu(ct​)dt]假设投资者可以以价格ptp_tpt​购买某资产,

2021-05-11 20:22:25 405

原创 工具变量原理

在做回归时,很多时候会有E(xtεt)≠0\text{E}(x_t \varepsilon_t)\neq 0E(xt​εt​)​=0的情况,这也意味着不满足外生性条件E(ε∣X)=0\text{E}(\varepsilon|X)=0E(ε∣X)=0,此时的OLS估计量β^\hat\betaβ^​就不再满足无偏性,并且随着nnn的变大,它的bias也无法变小。若对此无法理解,请先掌握《小样本OLS回归梳理》中的内容。此时该怎么办?一种解决方法是利用一些与ε\varepsilonε无关的变量,这就是工具变量

2021-04-25 13:52:04 1094

原创 资产定价核心等式及其应用

11.1 基本的定价等式假设有一笔在t+1t+1t+1时刻的payoff为xt+1x_{t+1}xt+1​的资产,该如何计算它在ttt时刻的价值?假如在今天买一只股票,那么下一期的payoff就是股票的价格加股息,即xt+1=pt+1+dt+1x_{t+1}=p_{t+1}+d_{t+1}xt+1​=pt+1​+dt+1​,xt+1x_{t+1}xt+1​是一个随机变量,投资者无法确切地知道他的投资在下一期会有多少收益,但他可以估算各种可能情况的概率。假设有一个代表性投资者,他的效用函数是U(ct,

2021-04-22 10:55:33 1391

原创 方差分解公式

在有些时候,直接计算随机变量的方差非常麻烦,此时可以用方差分解公式,将方差分解为条件期望的方差加条件方差的期望:Var(X)=Var[E(X∣Y)]+E[Var(X∣Y)]\text{Var}(X)=\text{Var}[\text{E}(X|Y)]+\text{E}[\text{Var}(X|Y)]Var(X)=Var[E(X∣Y)]+E[Var(X∣Y)]证明非常简单,注意到Var[E(X∣Y)]=E{[E(X∣Y)]2}−{E[E(X∣Y)]}2=E{[E(X∣Y)]2}−[E(X)]2\

2021-04-21 17:10:20 5288 1

原创 行列式的求导

在应用中,经常会碰到需要对某个矩阵的行列式进行求导的情况。而行列式的计算方法比较复杂,如果将它展开成后计算,会比较麻烦,因此最好直接记住一些结论。本文以计算∂∣A∣∂A\dfrac{\partial |A|}{\partial A}∂A∂∣A∣​和∂ln⁡∣A∣∂A\dfrac{\partial \ln |A|}{\partial A}∂A∂ln∣A∣​为例,介绍如何对行列式求导,并希望大家可以记住结论。首先,为防止大家线性代数的内容忘得差不多了,我们先以方阵AAA(n×nn\times nn×n)为例

2021-04-19 17:09:42 7940 4

原创 几乎必然收敛的含义

1 几乎必然收敛的概念几乎必然收敛(almost sure convergence),又叫以概率1收敛(convergence with probability 1),定义为:随机变量序列{Xn}\{X_n\}{Xn​}满足P(lim⁡n→∞Xn→X)=1\mathbf{P}(\lim_{n\to \infty} X_n\to X)=1P(n→∞lim​Xn​→X)=1则Xn→a. s. XX_n\xrightarrow{\text{a. s. }}XXn​a. s.

2021-04-15 22:43:18 4566

原创 正态分布的条件分布与边缘分布

本文总结多元正态分布的条件分布与边缘分布,证明不难,但都比较繁琐,故不做详细证明,有兴趣可以参考Pattern Recognition and Machine Learningy一书。1 正态分布的条件分布对于联合正态分布变量x∼N(μ,Σ)x\sim N(\mu,\Sigma)x∼N(μ,Σ),定义精度矩阵(the precision matrix)为协方差矩阵的逆,即Λ≡Σ−1\Lambda\equiv \Sigma^{-1}Λ≡Σ−1,做分块处理:x=[xaxb],μ=[μaμb],Σ=[Σaa

2021-04-14 13:38:06 5059

原创 多元正态分布初识

在本科阶段的教材中,往往会有多元正态分布的公式出现,但课堂上都不会重点讲解,而在研究生入学考试中也基本不会考。但在实际应用中,多元的情况却非常常见。本文通过对多元正态分布的公式进行拆解,来看看它到底是怎么回事。多元正态分布公式对于DDD维正态分布变量xxx,直接上它的密度公式:N(x∣μ,Σ)=1(2π)D/21∣Σ∣1/2exp⁡{−12(x−μ)′Σ−1(x−μ)}\mathcal{N}(x|\mu,\Sigma)=\dfrac{1}{(2\pi)^{D/2}}\dfrac{1}{\vert\

2021-04-13 13:22:11 596

原创 利用矩母函数求独立随机变量之和的分布

在求独立的随机变量之和的分布时,可用矩母函数法。1 矩母函数法定理 已知X1,…,XnX_1,\ldots,X_nX1​,…,Xn​为独立的随机变量,各种的矩母函数为M1,…,MnM_1,\ldots,M_nM1​,…,Mn​,a1,…,ana_1,\ldots,a_na1​,…,an​为常数,则Y=∑i=1naiXiY=\sum_{i=1}^{n}a_i X_iY=∑i=1n​ai​Xi​的矩母函数为MY(t)=E[exp⁡(t∑i=1naiXi)]=∏i=1nMi(ait)M_Y(t)=\tex

2021-04-12 20:58:07 2891

原创 比较横截面与时间序列的因子模型

发表于2020年Review of Financial Studies上的"Comparing cross-section and time-series factor models"一文,作者是2013年诺贝尔经济学奖得主、芝加哥大学Booth商学院的Eugene F. Fama,和他的老搭档、达特茅斯学院Amos Tuck商学院的Kenneth R. French,这也是二位的最新一次合作。该文十分简单,且为纯实证,本文对其关键部分作个剖析。在下文中,用CS(Cross-Section)表示“横截面

2021-04-11 09:17:50 2536

原创 Cauchy-Schwarz不等式、Hölder不等式与Minkowski不等式

本文介绍几个常用的与期望有关的不等式。1 Cauchy–Schwarz不等式Cauchy–Schwarz不等式的形式为:[E(XY)]2≤E(X2)E(Y2)[\text{E}(XY)]^2 \leq \text{E}(X^2)\text{E}(Y^2)[E(XY)]2≤E(X2)E(Y2)证明非常简单,只需先将YYY分解为相互正交的两部分(类似于OLS回归):Y=E(XY)E(X2)X+(Y−E(XY)E(X2)X)Y=\dfrac{\text{E}(XY)}{\text{E}(X^2)}

2021-04-08 15:26:44 1308

原创 概率空间与随机变量的概念

中学阶段的概率的概念,无法满足后续学习的要求,因此必须从测度论角度重新定义概率。本文整理了一些相关概念。1 概率的公理化定义定义 概率空间(probability space):三元参数组(Ω,F,P)(\Omega, \mathcal{F}, \mathbf{P})(Ω,F,P)定义了一个概率空间。其中Ω\OmegaΩ是样本空间,即一个随机试验的所有可能结果,F\mathcal{F}F是样本空间Ω\OmegaΩ的子集的集合,称为σ\sigmaσ-域(σ\sigmaσ-field),P\mathbf{

2021-04-07 15:05:47 874

原创 平稳时间序列的大样本OLS回归

有了《独立同分布的大样本OLS回归》的铺垫,现在进一步将OLS推广到平稳时间序列的情况。思路还是一样:进行点估计,再研究估计量的性质;构造统计量,在大样本下推导其渐近分布,并进行假设检验。这里的各种计算与上一篇非常像,需要注意的是大数定律和中心极限定理在这里的使用条件(遍历平稳、鞅差分过程等)与上一篇不同,因此也需要不同的假设。1 记号与假设记Q=E(xtxt′)Q=\text{E}(x_t x_t')Q=E(xt​xt′​),V=Var(xtεt)V=\text{Var}(x_t\vare

2021-03-29 12:28:53 1286

原创 Python模拟随机漫步

本文用Python模拟随机漫步行为。1 使用内建的的random模块import randomposition = 0walk = [position]steps = 1000for i in range(steps): step = 1 if random.randint(0, 1) else -1 position += step walk.append(position)random模块每次只能生成一个样本值,效率很低。如果要生成大量样本值,可用numpy.r

2021-03-27 12:20:47 418 1

原创 NumPy数组切片的复制问题

在使用NumPy数组时,有一个要注意的地方:在取数组的切片时,取出来的切片(Slices)仅仅是原始数组的视图(Views),而非它的复制!这与Python的built-in的list不同。arr = np.arange(10)arr输出:array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])接着,可以用广播的方式给其中的切片赋值:arr[5:8] = 12arr输出:array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])如果我

2021-03-26 16:13:19 568 1

原创 独立同分布的大样本OLS回归

本文将把OLS回归,从小样本推广到大样本的情形。关于小样本OLS回归,可见《小样本OLS回归的框架》和《小样本OLS回归梳理》。尽管在大样本下,假设、推导、结论都与在小样本情形下不同,但总体的思路还是一样的:进行点估计,再研究估计量的性质;构造统计量,在大样本下推导其渐近分布,并进行假设检验。本文考虑大样本情形中最简单的情况:独立同分布的随机样本。1 记号与假设由于可能会考虑到时间序列的情形,因此这里对于单个样本的下标采用ttt,不再用iii。记Q=E(xtxt′)Q=\text{E}(x_

2021-03-23 13:24:24 906

原创 小样本OLS回归梳理

上一篇《小样本OLS回归的框架》讲解了小样本OLS回归的主要框架,本文沿着该框架,对小样本OLS回归做一个全面的梳理。1 假设这里先将所有的小样本OLS回归中可能用到的假设放到一起,方便浏览。当然,后面的每一个结论并不是要用到所有的假设,而是只用到某几个假设,这在后面讲每个结论时会具体说明。假设1 线性性:yi=xi′β+εiy_i=x_i'\beta+\varepsilon_iyi​=xi′​β+εi​,其中β\betaβ是未知参数向量,将所有NNN个样本放到一起,可以写成y=Xβ+εy=X\be

2021-03-17 21:29:21 5145

原创 小样本OLS回归的框架

1 最小二乘法的历史不管是学习机器学习、计量经济学、数理统计,很多人接触到的第一个算法就是最小二乘法(least squares method)。这是一个非常古老的方法。早在18世纪早期,在天文学和航海领域就已经出现了最小二乘法的思想。真正意义上第一个正式发表该方法是在1806年的法国科学家Legendre,而数学王子Gauss据说在更早时候就发现了该方法,但直到1809年他在发表计算天体运动轨道时才正式使用,两人也为谁是第一个发现的争论不休。Gauss毕竟是数学王子,1829年,他又首次证明出,在线

2021-03-06 22:02:55 1744

原创 盈余意外的稳健度量

发表于2019年Journal of Finance上的"Robust Measures of Earnings Surprises"一文,提出了一种对于盈利意外的测度,它在一些条件下会比现有的一致误差CE(Census Error)测度表现更好,作者将其命名为FOM(Fraction Of Misses on the same side)。该文从2015年开始就在学术会议上作报告,过去的题目曾为"When Everyone Misses on the Same Side: Debiased Earnin

2021-03-01 22:23:25 220

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除