机器学习系列4 Logistic regression

逻辑回归简单说来就是在线性回归基础上加上sigmoid函数,但你真的理解它么?

一、为什么要用sigmoid?

之前在ABB研究院实习时,老板让我做一个简单的齿轮箱故障分类,当时的数据只有两种故障也比较简单,因此我提议使用逻辑回归,最终也完成的很好。但由于是在研究院,老板是个博士大佬很喜欢钻研问题于是就问我为什么加上个S函数,而且为什么明明叫回归却解决分类问题?我记得当时我的回答是:因为S函数会将输出归到0~1之间从而能代表样本为正例的概率,若概率大于0.5就判为正,反之判为负。但我知道这个解释是无法说服他人和自己的。

首先sigmoid的使用就是为了方便能用线性模型的结果来表示后验概率,为什么sigmoid就能表示后验概率呢,证明过程如下:

假设所给样本集仅有两个分类1、0,根据贝叶斯公式

p(y=1|x) = \frac{p(x|y=1)p(y=1)}{p(x|y=1)p(y=1)+p(x|y=0)p(y=0)}

假设上式可写为sigmoid函数形式

p(y=1|x) =\frac{1}{1+exp(-z)}=\delta (z)

z = ln\frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)}=ln\frac{p(y=1|x)}{p(y=0|x)}

由sigmoid函数可得到下式,该式被称为对数几率

z = ln\frac{\delta (z)}{1-\delta (z)}

这样我们就能看出,sigmoid的输出可以近似表示样本的概率预测,而我们的逻辑回归算法就是用线性回归的预测结果来拟合真实标记的对数几率。

二、公式推导

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值