相关接收机 Correlation Receiver

一、概述

    接收机由信号解调器检测器组成。

信号解调器

    1)  功能:将接收波形变换为N维向量,N为发送信号波形的维数(线性组合的基底数)。

    2)  变换方法:求接收波形在各基向量上的投影。

    3)  两种实现形式:

        a)  基于匹配滤波器的实现方法——匹配滤波器

        b)  基于信号相关器的实现方法——相关解调器

检测器

    根据N维向量的取值,判断发送波形为哪一个

 

二、相关解调器的数学原理和解调过程

1、构造相关解调器

    根据发送信号集,构造正交基

 

    即:发送信号可能的种类数为M,但维数只有N。

    要求:中每一个信号都可以表示成的加权线性:

    注意,正交基的构造不考虑噪声空间。

    叠加了信道噪声后,接收信号理论上可以分解为:

    其中:是误差项,是噪声中无法用基函数组合的部分。

2、得到接收信号在各基函数上的投影

    令接收信号通过一组并行的个互相关器:

    注意:由于还没有考虑检测器原理,因此该电路和最终实现电路不同

    其中:

    就是信号在基方向上的投影,是我们需要的。

    是高斯随机变量,由信道引入的加性噪声决定。

 

    这里用到了一个结论:在线性空间外的噪声,对信号检测(相关器输出)没有影响。原因很简单:是与不相关的分量,因此积分为0。

    

    最终相关器各路输出为:

    显然,相关器的输出和噪声一样满足高斯分布(是确定的函数值)。其均值和方差分别为:

    因此,当发送信号在基函数上加权值为时,最终得到向量的概率服从联合高斯分布

三、检测器的数学原理

 

1、MAP准则

 

    理想情况下,我们希望接收机能得到所有后验概率,最大后验概率对应的就是我们的判决结果

2、ML准则 :Maximum Likelihood 最大似然

    理想很丰满,现实很骨感。后验概率很难用电路获得。

    由贝叶斯公式进行变换:

    

    其中:

    是先验概率,一般设为等概;

    ,与发送信号无关,不影响判决。

    因此:寻找最大,变成了寻找最大。这个概率,恰好就是前面的信号解调器(相关器)计算得到的

    为了方便,我们通常取对数:

    显然,第一项是常数项,第二项是关于单调的函数。

    因此:寻找最大,变成了寻找最小欧氏距离:

    因此,基于ML的判决准则,又被称为最小距离检测

 

    进一步展开、化简:

    第一项是向量r的模值,对判断没有作用。设后两项的相反数为相关度量

 

    第二项是接收信号的能量,第一项是接收信号向量r在发送信号向量上的投影:

    因此:

 

    最终结论

    a)  能使相关度量最大的信号,就是我们的判决结果。

    b)  我们希望:接收信号能在信号解调器中,被转换成相关度量。

    c)  如果所有发送符号是等能量的,则最大就是判决结果。

    因此最终实现图如下:

 

3、不等概率情况

    此时,MAP准则不可以直接转换为ML准则。

    因为:


    所以我们考虑的最大值即可。结论和前面类似,也取对数。

阅读更多
版权声明:转载文章最上方需注明原文链接地址,并告知原作者。 https://blog.csdn.net/weixin_41730407/article/details/80316803
文章标签: 相关接收机
个人分类: 通信原理
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭