机器学习笔记-线性回归

线性回归

K-邻近算法/KNN-API

from sklearn.neighbors import KNeighborsClassifier

# 1.构造数据
x = [[1], [2], [3], [4]]
y = [0, 1, 2, 3]

# 2.训练模型
# 2.1 实例化一个估计器对象;这里的n_neighbors一般为5.取1个邻近样本
estimator = KNeighborsClassifier(n_neighbors=1)

# 2.2 调用fit方法,进行训练
estimator.fit(x, y)

# 3.数据预测
ret = estimator.predict([[0.1]])
print(ret)#结果为0;因为邻近x的4所以,y是y[3]=1;
# 可以这样理解, x是特征值, 是dataframe形式理解为二维的[[]],
# y表示的目标值, 可以表示为series, 表示为一维数组[]
ret1 = estimator.predict([[2.52]])
print(ret1)#结果为1;因为邻近x的4所以,y是y[3]=1;

距离度量

请添加图片描述

交叉验证法,k的值选取

  • 背景知识,方差越小,越瘦高,数据越集中;方差越大数据越分散是最好的。
    请添加图片描述

鸢尾花数据集API

from sklearn.datasets import load_iris

# 1.数据集获取
# 1.1 小数据集获取
iris = load_iris()
# print(iris)

# 1.2 大数据集获取
# news = fetch_20newsgroups()
# print(news)

# 2.数据集属性描述
print("数据集特征值是:\n", iris.data)
print("数据集目标值是:\n", iris["target"])
print("数据集的特征值名字是:\n", iris.feature_names)
print("数据集的目标值名字是:\n", iris.target_names)
print("数据集的描述:\n", iris.DESCR)
鸢尾花数据集数据可视化API

请添加图片描述

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.model_selection import train_test_split

# 1.数据集获取
# 1.1 小数据集获取
iris = load_iris()

# 3.数据可视化
iris_d = pd.DataFrame(data=iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
iris_d["target"] = iris.target
print(iris_d)

def iris_plot(data, col1, col2):
    sns.lmplot(x=col1, y=col2, data=data, hue="target", fit_reg=False)
    plt.title("鸢尾花数据显示")
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    plt.show()


iris_plot(iris_d, 'Sepal_Width', 'Petal_Length')
iris_plot(iris_d, 'Sepal_Length', 'Petal_Width')
鸢尾花数据集划分API

请添加图片描述

特征工程与处理API

归一化
  • 公式
    在这里插入图片描述

  • 直接在jupyter中运行即可,注意read_csv

import pandas as pd
from sklearn.preprocessing import MinMaxScaler, StandardScaler

def minmax_demo():
    """
    归一化演示
    :return:None
    """
    data = pd.read_csv("./data/dating.txt")
    print(data)

    # 1.实例化
    transfer = MinMaxScaler(feature_range=(3,5))

    # 2.进行转换, 调用fit_transform
    ret_data = transfer.fit_transform(data[["milage", "Liters", "Consumtime"]])
    print("归一化之后的数据为:\n",ret_data)

minmax_demo()
  • 鲁棒性(确定性、稳定性):就是归一化后容易收到异常值的影响,归一化的鲁棒性就差容易收到异常值的影响;归一化只适合小数据集的;请添加图片描述
标准化
  • 公式
    在这里插入图片描述
import pandas as pd
from sklearn.preprocessing import MinMaxScaler, StandardScaler

def stand_demo():
    """
    标准化演示
    :return:None
    """
    data = pd.read_csv("./data/dating.txt")
    print(data)

    # 1.实例化
    transfer = StandardScaler()

    # 2.进行转换, 调用fit_transform
    ret_data = transfer.fit_transform(data[["milage", "Liters", "Consumtime"]])
    print("标准化之后的数据为:\n",ret_data)
    print("每一列的方差为:\n", transfer.var_)
    print("每一列的平均值为:\n", transfer.mean_)

stand_demo()

再识K-邻近算法API

from sklearn.datasets import load_iris# 1.获取数据
from sklearn.model_selection import train_test_split# 2.数据基本处理
from sklearn.preprocessing import StandardScaler# 3.标准化
from sklearn.neighbors import KNeighborsClassifier# 4.机器学习-KNN

# 1.获取数据
iris = load_iris()

# 2.数据基本处理-数据的划分,分成训练和测试集
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)

# 3.特征工程 - 特征预处理
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 4.机器学习-KNN
# 4.1 实例化一个估计器
estimator = KNeighborsClassifier(n_neighbors=5)
# 4.2 模型训练
estimator.fit(x_train, y_train)

# 5.模型评估
# 5.1 预测值结果输出
y_pre = estimator.predict(x_test)
print("预测值是:\n", y_pre)
print("预测值和真实值的对比是:\n", y_pre==y_test)

# 5.2 准确率计算
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

API总结

请添加图片描述

归一化的API

请添加图片描述

标准化API

请添加图片描述

交叉验证API

请添加图片描述

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

# 1.获取数据
iris = load_iris()

# 2.数据基本处理
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)

# 3.特征工程 - 特征预处理
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 4.机器学习-KNN
# 4.1 实例化一个估计器
estimator = KNeighborsClassifier()

# 4.2 模型调优 -- 交叉验证,网格搜索
param_grid = {"n_neighbors": [1, 3, 5, 7]}
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5)

# 4.3 模型训练
estimator.fit(x_train, y_train)

# 5.模型评估
# 5.1 预测值结果输出
y_pre = estimator.predict(x_test)
print("预测值是:\n", y_pre)
print("预测值和真实值的对比是:\n", y_pre == y_test)

# 5.2 准确率计算
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

# 5.3 查看交叉验证,网格搜索的一些属性
print("在交叉验证中,得到的最好结果是:\n", estimator.best_score_)
print("在交叉验证中,得到的最好的模型是:\n", estimator.best_estimator_)
print("在交叉验证中,得到的模型结果是:\n", estimator.cv_results_)

在这里插入图片描述

  • 解释,交叉验证只能提高可信度;网格搜索才能提高准确度。
    在这里插入图片描述

线性回归-API

在这里插入图片描述

  • API
    在这里插入图片描述

损失函数

  • 公式(又称为最小二乘法);优化方法正规方程和梯度下降。其实就是把损失函数的值降到最低。
    在这里插入图片描述
    在这里插入图片描述
优化损失函数 正规方程

请添加图片描述
求解例子
在这里插入图片描述

优化损失函数 梯度下降
  • α就是步长或者叫学习率
    在这里插入图片描述
  • 例子
    在这里插入图片描述
梯度下降各种类别

请添加图片描述

  • 全梯度下降公式
    请添加图片描述

  • 随机梯度下降公式
    请添加图片描述

  • 小批量梯度下降公式
    请添加图片描述

  • 随机平均梯度下降公式
    请添加图片描述

回归性能分析

在这里插入图片描述

# coding:utf-8

"""
# 1.获取数据
# 2.数据基本处理
# 2.1 分割数据
# 3.特征工程-标准化
# 4.机器学习-线性回归
# 5.模型评估
"""

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, SGDRegressor, RidgeCV, Ridge
from sklearn.metrics import mean_squared_error


def linear_model1():
    """
    线性回归:正规方程
    :return:
    """
    # 1.获取数据
    boston = load_boston()
    # print(boston)

    # 2.数据基本处理
    # 2.1 分割数据
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2)

    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)

    # 4.机器学习-线性回归
    estimator = LinearRegression()
    estimator.fit(x_train, y_train)

    print("这个模型的偏置是:\n", estimator.intercept_)
    print("这个模型的系数是:\n", estimator.coef_)

    # 5.模型评估
    # 5.1 预测值
    y_pre = estimator.predict(x_test)
    # print("预测值是:\n", y_pre)

    # 5.2 均方误差
    ret = mean_squared_error(y_test, y_pre)
    print("均方误差:\n", ret)


def linear_model2():
    """
    线性回归:梯度下降法
    :return:
    """
    # 1.获取数据
    boston = load_boston()
    # print(boston)

    # 2.数据基本处理
    # 2.1 分割数据
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2)

    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)

    # 4.机器学习-线性回归
    # estimator = SGDRegressor(max_iter=1000, learning_rate="constant", eta0=0.001)
    estimator = SGDRegressor(max_iter=1000)
    estimator.fit(x_train, y_train)

    print("这个模型的偏置是:\n", estimator.intercept_)
    print("这个模型的系数是:\n", estimator.coef_)

    # 5.模型评估
    # 5.1 预测值
    y_pre = estimator.predict(x_test)
    # print("预测值是:\n", y_pre)

    # 5.2 均方误差
    ret = mean_squared_error(y_test, y_pre)
    print("均方误差:\n", ret)


def linear_model3():
    """
    线性回归:岭回归
    :return:None
    """
    # 1.获取数据
    boston = load_boston()
    # print(boston)

    # 2.数据基本处理
    # 2.1 分割数据
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2)

    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)

    # 4.机器学习-线性回归 solver一般默认是SGD随机梯度下降
    # estimator = Ridge(alpha=1.0)
    estimator = RidgeCV(alphas=(0.001, 0.01, 0.1, 1, 10, 100))
    estimator.fit(x_train, y_train)

    print("这个模型的偏置是:\n", estimator.intercept_)
    print("这个模型的系数是:\n", estimator.coef_)

    # 5.模型评估
    # 5.1 预测值
    y_pre = estimator.predict(x_test)
    # print("预测值是:\n", y_pre)

    # 5.2 均方误差
    ret = mean_squared_error(y_test, y_pre)
    print("均方误差:\n", ret)


if __name__ == '__main__':
    linear_model1() #线性回归:正规方程
    linear_model2() #线性回归:梯度下降法
    linear_model3() #线性回归:岭回归

欠拟合和过拟合

在这里插入图片描述

解决过拟合

  • 综述
    在这里插入图片描述

  • 正则化,一般是参数alpha。
    在这里插入图片描述

  • L1正则化3,4项直接为0;L2正则化:3,4项无限接近0。
    请添加图片描述

解决过拟合-岭回归(和梯度下降一样)
  • 岭回归公式(加的是L2正则项)
    请添加图片描述
  • API
    在这里插入图片描述
解决过拟合-Lasso回归
  • Lasso回归公式(加的是L1正则项)
    请添加图片描述
解决过拟合-弹性网络
  • 弹性网络(可以在L1和L2中切换,主要看r)
    请添加图片描述
解决过拟合-早停

请添加图片描述

模型的保存和加载

请添加图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值