实分析

实分析

0. 简介

实分析部分很多内容放在了之前的第二章(微积分I)里面,所以也需要回去复习一下。其中主要包括一些重要概念:极限,微分,黎曼积分,中值定理,均值定理,微积分基本定理,数列。
在这一章中,主要介绍了实数的性质以及勒贝格积分。

1. 实数的完备性

上下界

(1)X是一个实数的非空集合.对一个 u u u u ≥ x u\geq x ux对每一个 x ∈ X x\in X xX成立,那么 u u u称为X的上界
注1:同理可以定义下界.
注2:u不一定在X内,任何的大(小)于u的数都是上(下)界,故上下界可以有多个.

(2)X是一个具有上界的实数的集合,其上界u满足不存在比u小的数是X的上界,则u是X的最小上界.记作 u = l u b X u=lub X u=lubX.最小上界也被称作supremum,即 s u p X sup X supX. 两种记号等价.同理定义最大下界(glb) infimum,记作 i n f X inf X infX

最小上界公理(Least Upper Bound Axiom)

若X是一个有上界实数集合,那么有且仅有一个实数u是X的最小上界.

注:对比有理数则不存在该性质,考虑一个序列 ∑ i = 1 n 1 i ! \sum_{i=1}^n\frac{1}{i!} i=1ni!1,其极限为e,而e为实数,所以不存在一个最小有理数上界。

注:可以由Least upper bound axiom证明最大下界定理,两者等价.
注:上面的定理证明了实数中没有 “洞”,也就是说,只要实数希望收敛,总是可以找到一个实数值作为收敛目标。

Cauchy序列(熟悉的ε-N语言)

(1)定义
一个序列 { X n } \{X_n\} {Xn}是Cauchy序列,对于任意 ϵ &gt; 0 \epsilon&gt;0 ϵ>0 ∃ \exists 一个整数N,对任意的m,n ≥ \geq N,都有 ∣ x m − x n ∣ &lt; ϵ |x_m-x_n|&lt;\epsilon xmxn<ϵ.

(2)收敛定理
每一个Cauchy序列都是实数收敛的.

注:保证Cauchy列收敛的度量空间称为完备空间,R就是一个完备空间。

2.勒贝格测度

定义

首先记R中加入了无穷为 R ‾ \overline{R} R.

A是R的任意子集. ( a i , b i ) (a_i,b_i) (ai,bi)是开区间,称A被可数个开区间覆盖,即 A ⊆ ⋃ i = 1 ∞ ( a i , b i ) A\subseteq\bigcup_{i=1}^\infty(a_i,b_i) Ai=1(ai,bi).
定义一个函数 μ ∗ ( A ) = i n f ( ∑ i = 1 ∞ ( b i − a i ) , f o r A ⊆ ⋃ i = 1 ∞ ( a i , b i ) ) \mu^*(A)=inf(\sum^\infty_{i=1}(b_i-a_i),for A\subseteq\bigcup_{i=1}^\infty(a_i,b_i)) μ(A)=inf(i=1(biai),forAi=1(ai,bi))
注:上述方程可以取值到∞
注:(自己的理解)上面定义一系列开区间,可数个开区间覆盖可能会导致开区间有重叠,尽管重叠是必要的,因为开区间必须要接起来不能产生断点。但是在计算测度的时候,通过取下界,得到最小覆盖长度,就是上面集合A的测度。

Lebesgue可测集合

下面还需要定义可测集M,即函数 μ \mu μ的定义域. 记子族M包含所有的M.
M是可测集,当且仅当对任意 A ⊂ R A\subset R AR,有 μ ∗ ( A ) = μ ∗ ( A ⋂ M ) + μ ∗ ( A ⋂ M c ) \mu^*(A)=\mu^*(A\bigcap M)+\mu^*(A\bigcap M^c) μ(A)=μ(AM)+μ(AMc)

注:书中此处有错,上述式子的含义即为,M可以将R的任意子集测度分为如上两部分之和。

Lebesgue可测集合的性质
  1. R上的开区间,闭区间,有限集和可数无限集都是Lebesgue可测的.
  2. 可测集的补可测,可测集的有限或可数的并和交也是可测的.
  3. M并不是所有的P( R),即不是所有的R的子集均可测(构造一个不可测集是相对困难的)
其它重要性质
  1. 空集可测且测度为0. 单点集(singleton)测度为0. 更进一步可以知道Z和Q的测度都是0,(因为有洞hhh(其实是洞太多
  2. 开闭区间测度一致,为|b-a|. 无交有限区间的并的测度即为测度相加.包含无穷区间的测度为无穷.
  3. M 1 ⊆ M 2 M_1\subseteq M_2 M1M2,则 μ ( M 1 ) ≤ μ ( M 2 ) \mu(M_1)\leq\mu(M_2) μ(M1)μ(M2)

勒贝格可测函数

定义

一个函数 f : R → R f:R\to R f:RR是可测函数,如果对R上的每个开集O,逆象 f − 1 ( O ) f^{-1}(O) f1(O)是一个Lebesgue可测集.

由于连续函数的逆象得到的还是开区间,所以连续必然可测. 但是存在非连续但可测的函数(有一些非常重要)
注:求和,求导,乘积和取绝对值都不改变可测性.

特征函数(characteristic)

若A是R的任意子集,则可以定义R上的函数 χ A \chi_A χA,称为A的特征函数,满足 χ A ( x ) = { 1 , if  x ∈ A 0 , if  x ∉ A \chi_A(x)= \begin{cases} 1, &amp; \text {if $x \in A$} \\ 0, &amp; \text{if $x \notin A$} \end{cases} χA(x)={1,0,if xAif x/A
注:A可测等价于 χ A \chi_A χA可测.

阶梯函数(step function)

对每一个区间 A i A_i Ai都赋一个实值,所以就是阶梯状的函数,即多个特征函数的线性组合.

注1:如果每一个区间都可测,那么step function也可测.
注2:step function的值域是R的有限子集

为了从step function 得到勒贝格积分,需要如下定理:
f f f是一个定义在 R R R上的可测恒正函数,一定存在一个step function 的序列 ( s 1 , s 2 , . . . , ) (s_1,s_2,...,) (s1,s2,...,)使得 0 ≤ s 1 ≤ s 2 ≤ . . . 0\leq s_1\leq s_2\leq... 0s1s2... l i m n → ∞ s n = f lim_{n\to \infty}{s_n}=f limnsn=f(即对任意 x x x,都有 l i m n → ∞ s n ( x ) = f ( x ) lim_{n\to\infty}s_n(x)=f(x) limnsn(x)=f(x)
更加广义地,如果 f n f_n fn对每个n可测,且 f n → f f_n\to f fnf almost everywhere,可以得到 f f f也是可测的.
注:需要复习一下函数极限和函数序列的问题

勒贝格可积函数

勒贝格可积(对step function讨论)

首先定义step function,满足 A i A_i Ai都可测,则s也可测 s = ∑ i = 1 n a i χ A i s=\sum^n_{i=1}{a_i\chi_{A_i}} s=i=1naiχAi
Lesbegue可积条件为 a i ≠ 0 ⇒ μ ( A i ) &lt; ∞ a_i\neq0\Rightarrow \mu(A_i)&lt;\infty ai̸=0μ(Ai)<
满足可积条件的s的Lesbegue Integral为 ∫ s d μ = ∑ i = 1 n a i μ ( A i ) \int s d\mu=\sum_{i=1}^na_i\mu(A_i) sdμ=i=1naiμ(Ai)
注:Lebesgue测度 μ ( A i ) \mu(A_i) μ(Ai)类似长度单位

对一般的函数

首先定义一般函数的Lesbegue可积性.
1.需要是Lesbegue可测且 f &gt; 0 f&gt;0 f>0的函数.
2.对于任意step function s s s,满足 0 ≤ s ≤ f 0\leq s\leq f 0sf,都是Lesbegue可积的,且 ∫ s d μ &lt; + ∞ \int sd\mu&lt;+\infty sdμ<+
Lesbegue Integral的值为 ∫ f d μ = s u p { ∫ s d μ } \int fd\mu = sup\{\int sd\mu\} fdμ=sup{sdμ}
注:可积保证了其下每一个step function都可积,因此可以通过step function来逼近f的值.

更加一般的,放松 f &gt; 0 f&gt;0 f>0的条件。但将此类函数转化为正的函数进行求解,具体转换方法为:考虑 f = f + + f − f = f^++f^- f=f++f,其中 f + = 1 2 ( ∣ f ∣ + f ) f^+ = \frac{1}{2}(|f|+f) f+=21(f+f)当f为正时等于f,否则等于0, f − = 1 2 ( ∣ f ∣ − f ) f^- = \frac{1}{2}(|f|-f) f=21(ff),相反(等于-f,就是把负的部分反过来).

与黎曼积分的比较

由于勒贝格积分采取了从值域的逆象取得一个可测集(而不需要是区间),因此对于一些存在间断点问题的黎曼不可积问题,勒贝格积分可以给出积分结果.
例子: f ( x ) = χ Q ( x ) = { 1 , if  x  is irrational 0 , if  x  is rational f(x)=\chi_Q(x)= \begin{cases} 1, &amp; \text {if $x$ is irrational} \\ 0, &amp; \text{if $x$ is rational} \end{cases} f(x)=χQ(x)={1,0,if x is irrationalif x is rational
由于函数处处不连续,因此黎曼不可积,而考虑Lebesgue integral ∫ χ Q d μ = 1 ∗ μ ( Q ) + 0 ∗ μ ( Q c ) = 0 \int\chi_Qd\mu=1*\mu(Q)+0*\mu(Q^c)=0 χQdμ=1μ(Q)+0μ(Qc)=0

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值