实分析1

big rudin

实分析与复分析

1 前言——使用方法与特性

此书是一个统一的架构,分析学的基本技巧和定理通过了强调各个分支之间的密切联系而体现,于是联系了实分析与复分析还有泛函分析的一些思想。

例子:在泛函分析中得到了里斯表示定理与哈恩-巴拿赫定理,就可以“猜测”泊松积分公式,从而在龙格定理的证明中协调(特殊积分与数值计算),它们与关于有界全纯函数零点的布拉施克定理结合,就可以得到​定理的一个证明(与一个区间上的逼近有关),​是一个希尔伯特空间被应用到拉东-尼柯迪姆定理的证明中,引出一个关于不定积分的微分的定理,而这个定理又产生了有界调和函数的径向极限的存在性,​定理与柯西定理有一起给出了​和​定理,这一定理又用于关于实线上无限次可微函数的当茹瓦-卡尔曼定理中,最大模定理则给出了​空间上的线性变换的信息。

2 引言——指数函数

该函数定义是公式给出,级数形式,对每个复数(扩展到复数域)​,规定

级数(1)对每个​都绝对收敛(判断条件:加了绝对值符号级数收敛),对复平面的每一个有界子集都一致收敛(判断条件,取一个有界子集合,收敛关系与​变动无关:柯西判别,M判别,比较判别,判阶法,狄利克雷与阿贝尔判别)

于是可以知道exp是连续函数,并且(1)的绝对收敛指出:

由于级数的定义,则可以证明加法公式:

用到了级数定义与二项式定理,这个公式对所有复数都成立。

规定e是exp(1),习惯上通过较短的​表达。

接下来有若干定理:

  1. 对每一个复数,​

  2. exp的导数是它自己:​

  3. exp限制在实轴上是单调增加的正函数,且当​时,​;当​时,​。

  4. 存在一个正数​使得​,并使得​当且仅当​是整数

  5. exp是周期函数,其周期是​

  6. 映射​将实轴映到单位圆上

  7. 若​是复数且​,则存在某个​使​

根据这些定理,我们可以应用到某些特殊的无穷积分(反常积分上面):例如

实则是取了一个变换,令​即可。

3 抽象积分

19世纪末,黎曼积分被摒弃,因为对函数要求很高,并且有比较多的积分做不出来,对于牛顿-莱布尼茨定理的要求也很高,故而希望能有一个类型更广泛(扩展可积范围),更灵活(积分形式简单),更适合处理极限过程的积分来替代黎曼积分,代表人物有若尔当、博雷尔和勒贝格,而勒贝格因为其博士论文构造的勒贝格积分比较完备,且框架缜密,受到欢迎。

简单来说,其主要思想是:函数​在闭区间​上的黎曼积分可以用和式:

逼近,其中​为互不相交的闭区间,其并为​,​表示​的长度,而​,勒贝格发现,当上述集​属于直线上较大的一类子集(可测集)时,且将所考虑的函数类扩大到可测函数时,可以得到一个非常好的积分理论。

但是需要对集合论有一定的考虑:任意可数个可测集族的并和交是可测的,每一个可测集的余集是可测的;且,对于测度(长度)的推广:对两两不相交的可测集的每一个可数集族​,都有:

这个性质被称为可数可加性。

从黎曼积分理论过渡到勒贝格积分理论是一个完备化的过程。

积分理论中的大部分与基础空间的任何拓扑是无关的,实际上,一切都逃不开实线上的特殊情况。

集合论的记号和术语

这里普及一下简单的集合论知识:空集,单点集,集合,集族(族,类)。

并且将了集合的运算:属于,包含于,真包含于,等于,交并差补。

集合的等于要求:任意元素属于集A,证明元素属于集B;且反方向也要证明。

最重要的主要是讲述之前没理解的集族的概念:

若​是集族,其中​取遍某个指标集​,则​的并及交记作:​及​

对至少一个,对每一个

实则是一个遍历指标集做并和交运算的过程。

这里简要提及了一下集合的笛卡尔乘积,并对n元序组做了介绍,实现(实数系)记为​,广义实数系则加了正负无穷。并且给出上下确界定义。

给出映射定义(映射三条件:原集,象集,每个原集中元素对应到象集中元素),满射与单射。

可测性概念

可测函数类与连续函数类有一些共同的基本性质(相似之处),所以对于可测函数类的刻画都是用拓扑空间、开集、连续函数这些概念与可测空间、可测集、可测函数之间的类似性(类比)。从而更好地把握住可测函数的刻画情况。

定义拓扑

  1. 集​的子集族​称为​上的一个拓扑,若​具有一下的三个性质:

    1. ​及​(空集与全集)

    2. 若则​(有限交运算封闭)

    3. 若​是由​的元素构成的集族(有限、可数或不可数),则​(关于并运算封闭)

  2. 若​是​上的拓扑,则称​为一个拓扑空间,且​的元素称为​的开集。(拓扑中开集的定义)

  3. 若​和​为拓扑空间,且​是​到​内的映射,而对​的每一个开集​,​是​的开集,则称​是连续的。(开集的原像是开集)

定义测度(长度)

  1. 集​的子集族​称为​的一个​代数,若​具有如下性质:

    1. ​ (全集在代数中)

    2. 若​,则​,其中​是​关于​的补集(代数中任意集合对补运算封闭)

    3. 若​,且​,则​(代数对并运算封闭)

  2. 若​是X的​代数,则称​是一个可测空间,且​的元素称为​的可测集

  3. 若​是可测空间,​是拓扑空间,​是​到​内的映射,而对​的每一个开集​,​是​的可测集,则称​是可测的。(函数可测定义:开集原像是一个可测集)。

我们最为熟悉的拓扑空间是度量空间,满足了非负,对称,三角不等式。加上度量的情况下,对一个开球的描述就更为具体。

局部连续性质

若对​的每一个邻域​,对应有​的一个邻域​,使得​,则称​到​内的映射​在点​处连续。

我们知道,对于函数(映射)整体连续的拓扑概念来说,就是任意开集的原像也是开集;然而对于局部概念来说,也是如此,根据定义,可以知道点​的邻域是一个包含点​的开集,但根据映射的定义,才有了这个包含关系,也就是找到的原像投射到值域是包含于原函数值的集合的。

于是容易得到以下命题:

命题(统一两个连续)

设​和​是拓扑空间,​是​到​内的映射,当且仅当​在​的每一点连续时,映射​是连续的。

这里统一了两个连续性:整体与局部,当局部延拓到整体时,两者的连续性是一致的。

对测度的补充

设​是集​内的​代数,由​代数的定义可以推出以下性质:

  1. 由于,故可以推出(空集属于代数,与拓扑空间对应)

  2. 在定义三中取,可以得到:若,则(有限并)

  3. 由于

    所以对于可数交(当然对有限交)是封闭的。

  4. 由于,若及,就有。(对差运算封闭)

所谓的前缀是代表对所有的可数并运算成立,而没有这个前缀则是称为一个代数,是对有限并运算成立。

定理(连续函数性质)

设和为拓扑空间,且是连续的。

  1. 若是拓扑空间,是连续的,且,则是连续的。

  2. 若是可测空间,是可测的,且,则是可测的。

简单来说就是:连续函数的连续函数是连续的;可测函数的连续函数是可测的。

二维情况下的特殊例子

设和是可测空间上的实可测函数,设是平面到拓扑空间内的连续映射,且对定义:

则是可测的。

证明思路:将这个函数套用上述定理,仅需证明这个函数可测即可,该函数可测即为该函数值域的原像是可测的,而可将其分为与函数的原像之并,在二维平面上可以取到矩形的可数并,从而因为与可测,所以可测。证毕。

推论:引用到复数域

  1. 若和是上的实可测函数,,则为上的复可测函数。

  2. 若是上的复可测函数,则都是上的实可测函数。

  3. 若及是上的复可测函数,则及也是复可测函数。

  4. 若是上的可测集,并且

    当当

    则是可测函数。

  5. 若为上的复可测函数,则存在上的复可测函数,使得,且。

证明:取一个特殊的集合和一个特殊的函数,并为了保证其模为1,标准化,已知可测,仅需证明可测即可。

现在指出存在大量的代数

若为的任意子集族,则在内存在一个最小的代数,使得。

其中被称为由生成的代数

证明:首先对扩展出去的所有代数,对其取交运算,得到,然后对其验证是否代数(验证性质)。

也就是对:全集、空基、并交补差运算都封闭。

博雷尔集合

设为拓扑空间,在内存在一个最小的代数,使得内每一个开集(拓扑空间中每个元素)都属于,称的元素为的博雷尔集。

特别地,由于闭集是开集的补集(满足代数对补运算的封闭性),闭集是博雷尔集。

同时可以推出:闭集的一切可数并及开集的一切可数交都是博雷尔集。这两者分别表示为集以及集,表示闭集,表示开集。

显然,因为是代数,所以不仅是拓扑空间,也可以看成可测空间,而博雷尔集则是这里的可测集。

博雷尔可测:考虑可测空间。若是的连续映射,其中为任意的拓扑空间,由定义立刻可以知道,对的每一个开集(其实就是每一个元素),。也就是:的每一个连续映射都是博雷尔可测的。

博雷尔可测的性质

假设是内的代数,为拓扑空间,是到的一个映射。

  1. 若为所有集使得的集族,则为内的代数。

  2. 若可测且为内的博雷尔集,则。

  3. 若,且对每一个实数,,则可测

  4. 若可测,为拓扑空间,为博雷尔映射,且,则可测。

3常常用来作为实值函数可测性的判别标准

4则是推广了连续函数性质。

定义上下极限与收敛

设为内的一个序列,令

称为的上极限,记作:

容易验证下列性质:首先:(由于定义的是上确界,去掉某个元素后,该元素可能比较大,所以产生这个比较链),所以当,;其次,存在使得当时,,且为具有此性质的最大数。

同样可以这样定义下极限:仅需简单交换(1)与(2)中的和,注意:

如果收敛,显然有:(上下极限效果一致)

设为集上的广义实值函数序列,则用

来定义在上的函数以及

在每一点处此极限都存在,则称为序列的点态极限。(每一点极限均存在)

函数列可测,其上下极限亦可测

如果对是可测的,且

则以及都是可测的。

证明:由可测函数定义,转化为其原像集合的可测性质,于是函数可以拆分为可数个的并集,而函数列本身可测,于是可测;同样将改为,其结论同样成立。而函数可以表示为先取上确界再取下确界,其可测性可以同样证得。

推论:

  1. 每个点态收敛的复可测函数序列的极限是可测的。(定义)

  2. 若及可测(值域在内),则及也可测,特别地,函数以及是可测的。

函数正负部:

上述函数的与被称为的正部和负部,我们有和

这种表示方法,将表示为具有某种极小性质的、两个非负函数之差的典型形式:

命题:若,及,则且

证明:小于,且大于0,可以推出的正部小于,同理可证负部。

简单函数

在可测空间上,值域仅由有有限个点组成的复函数称为简单函数。指的是非负简单函数,值域为的有限子集。(排除了)

如果为简单函数不同的值,且令,显然有

这里的定义为:

是上的可测集,并且

当当

上面称为的特征函数,显然,当且仅当每个可测的时候,可测。

可测函数可以用简单可测函数逼近

设可测,则存在上的简单可测函数,使得

  1.  

  2. 对每个,当时,

思路:构造一个可测函数,由与接近于的可测函数的复合,从而根据两函数可测,复合函数亦可测可以证明。但是在构造接近于的可测函数的时候,需要一定的技巧性,需要满足上述两个条件且可测,于是乎构造了一个递增函数列,且收敛到从而证毕。

测度的初等性质

  1. 正测度为一个定义在代数上的函数,其值在内,并且是可数可加的。(测度本身是一个函数)

    即若为中互不相交的的可数集族,则

    假设至少对一个

  2. 测度空间是一个可测空间,具有定义在其可测集的代数上的正测度。

  3. 复测度是定义在一个代数上的复值可数可加函数。

实测度是复测度的一个子类,对正测度允许取

正测度性质

设为代数上的正测度,则

  1. (空集测度为0)

  2. 若均为的两两不相交的元素,则

    (有限可加性质)

  3. 若,则蕴含着。(单调性)

  4. 若,且

    则当时,(关于测度的集列极限)

  5. 若,且

    且有限,则当时,

这些性质除了由于序关系导致无法比较大小之外的3,其他性质对于复测度也都成立。

证明方式:从测度定义出发,由可数可加可以推出有限可加,单调性证明则通过集合的拆分(不相交),并且子集合测度大于等于0可证,集列极限则通过拆分成可数个不相交的子集合,之后用无穷级数求和的定义得到(收敛且极限存在)。

运算添加无穷运算

有限数与无穷相加等于无穷

有限数与无穷相乘等于无穷或者0(当有限数为0时)

于是对消去律需要限制有限数

正函数的积分

这里为集的代数,为上的正测度

定义积分为可测简单函数,形如

其中为的不同的值,且如果,定义

如果为可测,且,定义

该上确界表示取遍所有使得的简单可测函数

(3)的左边称为在上关于测度的勒贝格积分,是一个数值。

积分性质(集合与函数均可测)

  1. 若,则(积分单调性)

  2. 若,则(积分单调性)

  3. 若而为常数,,则(线性)

  4. 若对所有,即便,也有。(积分定义0与无穷的计算)

  5. 若,即便对每个,也有。(同上)

  6. 若,则(写成特征函数表达)

最后表明,可以把积分定义限制在全部上的积分,不失一般性,我们可以用6在子集上积分。(全集可以拆分为各个子集的积分)

积分的线性性质

设和为上的非负可测简单函数,对,定义

则为上的测度,同时

证明思路:首先证明函数为测度,验证其可数可加性,对空集函数值为0,且不恒等于无穷。其次,对(2)左式用定义,通过定义为测度与函数值的相乘,直接可以拆分为两个正函数积分(拆分的集合两两不相交,可以取取到两个函数值的交集)。

勒贝格单调收敛定理

设是一个上的可测函数序列,且假定

  1. 对每一个,。

  2. 对每一个,当,于是是可测的,且当时,有

这里告诉我们可测函数序列积分可以逼近与可测函数积分。(满足序列单调性和序列收敛情况下)

证明思路:根据函数列可测,其上下极限均可测,可以推出的可测性。又因为函数列的单调性,由与可以推出

因此仅需证明另一个方向的不等关系,即可夹逼从而证明结论。

另一个方向不等式证明:通过构造一个简单可测函数与常系数相乘,并且构造集合套,从而可以使用集列极限性质与线性性质,取,从而实现另一个方向的不等式。

可测函数列的无穷级数收敛于函数,其积分相等。

若对是可测的,并设

则有

证明思路:可以用简单可测函数列逼近可测函数列,根据测度的线性性质与勒贝格单调收敛定理,可以证明其可测函数列积分的线性性。然后构造函数为可数个函数序列之和,再用一次勒贝格单调收敛定理,可以证毕。

推论:(对双重指标的正项无穷级数可以互换指标)

若对和成立,则

证明仅需使用两次勒贝格单调收敛定理即可。

法图引理(交换极限与积分的单边不等式)

若对每一个正整数是可测的,则

可以出现严格的不等号,且这里去的是下极限。

证明思路:取下确界序列为一个新的函数,该函数显然小于对应的函数列,根据积分单调性可以得到一个不等式,同时构造的新函数列具备有单调性,于是可以证明该函数列可测性,根据上下极限的定义,证明收敛,通过单调性与收敛,直接套用勒贝格单调收敛定理,根据该不等式的左侧替换(单调收敛),于是证毕。

可测函数的另一种表现形式(测度之间的转换)

设是可测的,且

则为上的一个测度,且有:

对其值域在内的上的每一个可测函数成立

证明思路:先证明为一个测度,证明可数可加性质,测度定义,空集测度为0,且不恒为无穷。取为一个特征函数,即可证明,一般情况可以用勒贝格单调收敛定理证明。

复函数的积分

定义是所有使得

的上的复可测函数的集族。(根据正负部分解,可测性蕴含着的可测性)

若,这里的和为上的实可测函数,且,则对每一个可测集定义

这四个函数都是实的、可测和非负的。因此,右边的积分存在,且有等等,故而这四个积分每个都是有限的。从而定义了左边的积分为一个复数。

线性性质

设和,且和是复数,则,且

证明思路:根据复积分的定义,需要证明其有限性质,通过绝对值不等式放缩,同时提取常系数,可以证明其属于复可测函数的集族。通过拆分为正负部即可证毕

积分的绝对值不等式

若,则

证明思路:显然左式表示为积分的实部,仅需做一个实部不等式做一个过渡即可。

勒贝格控制收敛定理(可积函数控制定理)

设是上的复可测函数序列,使得

对每一个都成立(点态收敛)。若存在一个函数使得

并且有

证明思路:首先由于可积函数控制,故而该函数也是有限的,可积性质可以证明,然后通过构造函数使用法图引理(单边不等式极限与积分互换),可以得到(3),由于积分绝对不等式可以推出(4)。

零测集作用

定义“几乎处处”:存在一个,使得,,并且在的每一点上成立。(为命题)

零测度集在积分中可以忽略。

测度完备化

设是一个测度空间,是所有这样的的集族,对于存在集和,使得,且,在这种情况下,定义,则是一个代数,且是上的一个测度。

零测度集的任何子集都可测。这里的就是的完备化(将测度推广到某些不在的集合中,但要求满足迫敛性)

证明思路:该测度唯一,且扩充之后的满足代数的三性质:全集在其中,对补运算封闭,可数可加性。

可测函数列级数求和与积分交换

设是一个在上几乎处处有定义的复可测函数序列,满足

则级数

几乎所有的收敛,,并且

函数列级数本身收敛于函数,所以实则是一个交换级数与积分符号的一个问题。

证明思路:构造函数列的绝对级数,且可以证明其积分有限,于是对级数(2)绝对收敛可证,通过构造这个函数控制其函数,用一次勒贝格控制收敛定理即可证毕。

对于某些限制,我们仅能够得到几乎处处的结论:

  1. 设是可测的,并且,则于上。(测度大于0的情况下,积分为0推出函数几乎处处为0)

  2. 设并且对每一个,有,则于上(对于复可测函数有同样的结论)

  3. 设并且

    则存在一个常数,使得于上

证明思路:对(1)仅需证明在函数值大于0的可测集上,测度为0即可。对(2)采取划分为实部虚部即可,对(3)仅需套用积分绝对不等式即可。

圆盘平均值几乎处处定理

假设,是复平面上的一个闭集,且对于每一个,平均值

在内,则对几乎所有的

证明思路:对于圆盘内,函数几乎处处将属于的点映射到圆盘上。那么可以考虑圆盘外,仅需证明对于圆盘外的函数逆像,其测度为0即可。这里推导出,取圆盘的补集(圆盘外),反证法假设其测度大于0,根据测度大于0的平均值与圆盘中心位置的估算,可以导出其小于半径,但是因为取得是圆盘的补给,显然应该大于半径,因此证毕。

有限集隶属定理

设是在内的可测集序列,满足

则几乎所有的,至多属于有限个集

证明:反证法,假设有某些构成的集合属于无限个集,仅需证明其测度为0。构造一个函数满足在属于的时候达到无穷,而在其他有限集合中取值为0或者1,则可以满足题设要求可测,并且除了集之外有限,而该级数有限,故而该函数积分有限则需要集的测度为0。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值