2.迭代器
可迭代对象:
- list,str,tuple etc. ---->for…in…遍历---->遍历(迭代)
迭代器协议:
- 对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么引起StopIteration异常,以终止迭代(只能往下走,不可以回退)
实现了迭代器协议对象就是和迭代对象。
实现:
- 通过在对象内部定义一个
__iter__
方法
li=[1,2,3]
li_iter=li.__iter__()
print(li_iter.__next__())
print(next(li_iter))
print(li.__iter__().__next__())
print(next(iter(li)))
#1 2 1 1
#**可迭代对象测试**
from collections.abc import Iterable
#使用instance()来判断对象是否可迭代
print(isinstance([],Iterable))
#True
类的迭代
在迭代一个可迭代的对象时,实际上是获取该对象的一个迭代器。然后通过该迭代器依次获取对象的每一个数据。
from collections.abc import Iterable
class People:
def __init__(self):
self.names=[]
def add(self,name):
self.names.append(name)
def __iter__(self):
return self.names.__iter__()
peo=People()
peo.add('sheep')
peo.add('Tom')
peo.add('jack')
print(isinstance(peo,Iterable))
for tem in peo:
print(tem,end=' ')
#True
#sheep Tom jack
if no 7,8行:
print(isinstance(peo,Iterable))
is False
通过迭代器迭代
tem=iter(peo)
print(next(tem))
#sheep
结论:for …in…循环的本质就是通过iter()函数获取可迭代对象的Iterable迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值,当遇到StopIteration异常后,退出。
应用场景
迭代器的 核心就是通过next()函数调用返回下一个数据值。如果每次返回的数据值不是在一个已有的数据聚合中读取的,而是通过程序按照一定规律计算生产。那么也就意味着可以不用依赖一个已有的数据集,namely,无需将所有的迭代对象数据一次性缓存下来供后续使用。这样可以节省大量的存储空间。
demo:
斐波那契数列
class FibIt(object):
'''斐波那契数列迭代器'''
def __init__(self,n):
#记录生成的斐波那契数列
self.n=n
#记录当前记录的索引
self.current_index=0
#记录两个初始值
self.num1 = 0
self.num2 = 1
def __next__(self):
'''调用next()函数来获取下一个数'''
if self.current_index<self.n:
num = self.num1
self.num1,self.num2=self.num2,self.num1+self.num2
self.current_index+=1
return num
else:
raise StopIteration
def __iter__(self):
return self
fi=FibIt(10)
for num in fi:
print(num,end=' ')
生成器
利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器
要创建一个生成器,有很多种方法。
第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )
G = ( x*2 for x in range(5))
print(next(G))
print(next(G))
print(next(G))
生成器函数
在函数中如果出现了yield关键字,那么该函数就不再是一个普通函数而是一个生成器函数。
def foo():
yield 1
yield 2
f=foo()
print(next(f))
print(next(f))
next 和yield 进行匹配
构造一个产生无穷奇数的生成器
def odd():
n=1
while True:
yield n
n+=2
a=odd()
while True:
print(next(a),end=' ')
#类定义
class odd(object):
def __init__(self):
self.n=1
def __iter__(self):
return self
def __next__(self):
self.n+=2
return self.n
a=odd
for i in a:
print(i)
生成器支持的方法
- close()
- 手动关闭生成器函数,后面调用会直接引起异常
- send()
- temp=yield i 赋值
- 使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。
- 如果生成器未启动,则必须在使用send前启动生成器,使用方法可以是a.next(),也可以是a.send(None)执行到第一个yield处
- 如果是已启动,则send(para)的作用就是给x赋值
def bow():
value=0
while True:
re=yield value
if re=='e':
break
value='got : %s'%re
#send()的作用就是使re赋值为其所传送的值,然后让生成器执行到下一个yield
b=bow()
print(b.send(None))
print(b.send('a'))
print(b.send('b'))
#0
#got : a
#got : b
b.__next__()
print(b.send('a'))
print(b.send('b'))
#got : a
#got : b
- throw()
- 手动抛出异常
闭包
闭是封闭(函数中的函数),包是包含(该内部函数对外部函数作用域而非全局作用域变量的引用)
闭包:
- 内部函数对外部函数作用域里的变量的引用
- 函数内的属性,都是有生命周期,都是在函数执行期间
- 闭包内的闭包函数私有化了变量,完成了数据封装,类似面向对象
demo:
def s():
print('s()')
def st(num):
print('st()')
print(num)
return st
a=s()
a(10)
#s()
#st()
#10
装饰器
装饰器存在的意义
- 不影响原有函数功能
- 可以添加新功能
一般常见的,比如拿到第三方的API接口,第三方不允许修改这个接口。这个时候装饰器就派上了用场。
装饰器本身也是一个函数,作用是为现有存在的函数,在不改变函数的基础上,增加一些功能进行装饰。
它是以闭包的形式去实现的。
在使用装饰器函数时,在被装饰器的函数前一行,使用@装饰器函数名
形式来进行装饰
Demo:
现在一个项目中有很多函数,由于我们项目越来越大,功能也越来越多,就会导致程序越来越慢。
其中一个功能函数的功能,是实现一百万次的累加。
import time
def count_time(fun):
def wapper():
start=time.time()
fun()
end=time.time()
print(end-start)
return wapper
@count_time
def my_count():
s=0
for i in range(10000):
s+=i
print('sum=',s)
my_count()