Leetcode112 路径总和
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum/
博主Github:https://github.com/GDUT-Rp/LeetCode
题目:
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true
, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2
。
解题思路:
方法一:迭代
直观想法
我们可以用栈将递归转成迭代的形式。深度优先搜索在除了最坏情况下都比广度优先搜索更快。最坏情况是指满足目标和的 root->leaf 路径是最后被考虑的,这种情况下深度优先搜索和广度优先搜索代价是相通的。
利用深度优先策略访问每个节点,同时更新剩余的目标和。
所以我们从包含根节点的栈开始模拟,剩余目标和为 sum - root.val
。
然后开始迭代:弹出当前元素,如果当前剩余目标和为 0
并且在叶子节点上返回 True
;如果剩余和不为零并且还处在非叶子节点上,将当前节点的所有孩子以及对应的剩余和压入栈中。
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int sum) {
if (root == NULL) {
return false;
}
vector<TreeNode*> node_stack;
vector<int> sum_stack;
node_stack.push_back(root);
sum_stack.push_back(sum - root->val);
TreeNode* node;
int curr_sum;
while (!node_stack.empty()) {
node = node_stack.back();
node_stack.pop_back();
curr_sum = sum_stack.back();
sum_stack.pop_back();
if ((node->right == NULL) && (node->left == NULL) && (curr_sum == 0)) {
return true;
}
if (node->right != NULL) {
node_stack.push_back(node->right);
sum_stack.push_back(curr_sum - node->right->val);
}
if (node->left != NULL) {
node_stack.push_back(node->left);
sum_stack.push_back(curr_sum - node->left->val);
}
}
return false;
}
};
Java
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null)
return false;
LinkedList<TreeNode> node_stack = new LinkedList();
LinkedList<Integer> sum_stack = new LinkedList();
node_stack.add(root);
sum_stack.add(sum - root.val);
TreeNode node;
int curr_sum;
while ( !node_stack.isEmpty() ) {
node = node_stack.pollLast();
curr_sum = sum_stack.pollLast();
if ((node.right == null) && (node.left == null) && (curr_sum == 0))
return true;
if (node.right != null) {
node_stack.add(node.right);
sum_stack.add(curr_sum - node.right.val);
}
if (node.left != null) {
node_stack.add(node.left);
sum_stack.add(curr_sum - node.left.val);
}
}
return false;
}
}
Python
# -*- coding: utf-8 -*-
# @File : LeetCode104.py
# @Author : Runpeng Zhang
# @Date : 2020/3/22
# @Desc : 二叉树的路径总和
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def hasPathSum(self, root, sum):
"""
:type root: TreeNode
:type sum: int
:rtype: bool
"""
if not root:
return False
de = [(root, sum - root.val), ]
while de:
node, curr_sum = de.pop()
if not node.left and not node.right and curr_sum == 0:
return True
if node.right:
de.append((node.right, curr_sum - node.right.val))
if node.left:
de.append((node.left, curr_sum - node.left.val))
return False
复杂度分析
时间复杂度:
O
(
N
)
\mathcal{O}(N)
O(N),其中 N 是树的结点数,因为每个结点都访问一次。
空间复杂度:
O
(
N
)
\mathcal{O}(N)
O(N),其中 N 是树中节点的数量。
方法二:递归
直观想法
最直接的方法就是利用递归,遍历整棵树:如果当前节点不是叶子,对它的所有孩子节点,递归调用 hasPathSum 函数,其中 sum 值减去当前节点的权值;如果当前节点是叶子,检查 sum 值是否为 0,也就是是否找到了给定的目标和。
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int sum) {
if (root == NULL) {
return false;
}
if (root->left == NULL && root->right == NULL && root->val == sum) {
return true;
}
return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
}
};
Java
/* Definition for a binary tree node. */
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null)
return false;
sum -= root.val;
if ((root.left == null) && (root.right == null))
return (sum == 0);
return hasPathSum(root.left, sum) || hasPathSum(root.right, sum);
}
}
Python
# -*- coding: utf-8 -*-
# @File : LeetCode112.py
# @Author : Runpeng Zhang
# @Date : 2020/3/22
# @Desc : 路径总和
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def hasPathSum(self, root: TreeNode, sum: int) -> bool:
if root is None:
return False
if root.left is None and root.right is None and sum == 0:
return True
return self.hasPathSum(root.left, sum - root.val) or self.hasPathSum(root.right - root.val)
算法复杂度:
时间复杂度:访问每个节点恰好一次,时间复杂度为
O
(
N
)
O(N)
O(N) ,其中
N
N
N 是节点的个数,也就是树的大小。
空间复杂度:在最糟糕的情况下,树是完全不平衡的,例如每个结点只剩下左子结点,递归将会被调用
N
N
N 次(树的高度),因此保持调用栈的存储将是
O
(
N
)
O(N)
O(N)。但在最好的情况下(树是完全平衡的),树的高度将是
log
(
N
)
\log(N)
log(N)。因此,在这种情况下的空间复杂度将是
O
(
log
(
N
)
)
O(\log(N))
O(log(N))。