老石榴之三:如何访问、处理dataframe,Series中的数据(进行ANOVA方差分析)

本文介绍了如何访问和处理DataFrame及Series数据,特别是针对ANOVA方差分析的需求。通过讲解索引方法,如[].索引法和.loc方法,以及定义series_to_list()函数,简化了数据处理过程,避免了for循环和if条件语句。文中还强调了Pandas中基于标签的索引协议和注意事项。
摘要由CSDN通过智能技术生成

背景(目标)

能够按照一个列索引,将数据进行分类,进而进行进一步的处理,我们就不需要用上一篇的笨办法,把他们的值赋值被数组了。本文通过访问Dataframe,Series的方法, 定义series_to_list()函数,成功实现两个目的:

  1. 将DataFrame转化成array的形式
  2. 优化方法,避开for循环+if条件语句,使代码更简洁。
  3. 学会使用方法(indexer),在不使用临时变量的情况下链接数据选择操作。

代码

老规矩先上代码

# -*- coding: utf-8 -*-
"""
Created on Thu May  9 04:40:12 2019

@author: alfred90
"""
import pandas as pd
import numpy as np
import math as ma
import random as rd
from random import sample
import scipy as sp

data = pd.read_excel("data.xlsx")
gbr = data.groupby("群类别")
gbr.groups

#定义一个字典,明确各类的比例
typicalFracDict = {
   
    1:0.23,
    2:0.14,
    3:0.09,
    4:0.2,
    5:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值