Datawhale零基础入门NLP赛事 - Task3 基于机器学习的文本分类

学习目标

学会TF-IDF的原理和使用
使用sklearn的机器学习模型完成文本分类

文本表示方法 Part1

在机器学习算法的训练过程中,假设给定 N个样本,每个样本有 M个特征,这样组成了 N×M的样本矩阵,然后完成算法的训练和预测。同样的在计算机视觉中可以将图片的像素看作特征,每张图片看作hight×width×3的特征图,一个三维的矩阵来进入计算机进行计算。

但是在自然语言领域,上述方法却不可行:文本是不定长度的。文本表示成计算机能够运算的数字或向量的方法一般称为词嵌入(Word Embedding)方法。词嵌入将不定长的文本转换到定长的空间内,是文本分类的第一步。

One-hot

这里的One-hot与数据挖掘任务中的操作是一致的,即将每一个单词使用一个离散的向量表示。具体将每个字/词编码一个索引,然后根据索引进行赋值。

One-hot表示方法的例子如下:

句子1:我 爱 北 京 天 安 门
句子2:我 喜 欢 上 海
首先对所有句子的字进行索引,即将每个字确定一个编号:

{
‘我’: 1, ‘爱’: 2, ‘北’: 3, ‘京’: 4, ‘天’: 5,
‘安’: 6, ‘门’: 7, ‘喜’: 8, ‘欢’: 9, ‘上’: 10, ‘海’: 11
}
在这里共包括11个字,因此每个字可以转换为一个11维度稀疏向量:

我:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
爱:[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

海:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

Bag of Words

Bag of Words(词袋表示),也称为Count Vectors,每个文档的字/词可以使用其出现次数来进行表示。

句子1:我 爱 北 京 天 安 门
句子2:我 喜 欢 上 海
直接统计每个字出现的次数,并进行赋值:

句子1:我 爱 北 京 天 安 门
转换为 [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

句子2:我 喜 欢 上 海
转换为 [1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

N-gram

N-gram与Count Vectors类似,不过加入了相邻单词组合成为新的单词,并进行计数。

如果N取值为2,则句子1和句子2就变为:

句子1:我爱 爱北 北京 京天 天安 安门
句子2:我喜 喜欢 欢上 上海

TF-IDF

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数
IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

基于机器学习的文本分类

  • 方法一
# Count Vectors + RidgeClassifier

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score

train_df = pd.read_csv('../data/train_set.csv', sep='\t', nrows=15000)

vectorizer = CountVectorizer(max_features=3000)
train_test = vectorizer.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

方法二:

# TF-IDF +  RidgeClassifier

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import f1_score

train_df = pd.read_csv('../data/train_set.csv', sep='\t', nrows=15000)

tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=3000)
train_test = tfidf.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值