R语言----逻辑回归各统计量解读

本文介绍了R语言中逻辑回归的glm()函数,详细解释了逻辑回归模型的统计量,包括Deviance Residuals、Coefficients、p值等,并通过实例展示了如何分析模型中各变量的影响。在示例中,发现只有权重(wt)对传输模式(am)有显著影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归是回归模型,其中响应变量(因变量y)具有诸如True / False或0/1的分类值。 它实际上基于将其与预测变量(自变量x)相关的数学方程测量二元响应的概率,作为响应变量的值。
逻辑回归的一般数学方程为 :

y = 1/(1+e^-(a+b1x1+b2x2+b3x3+…))

以下是所使用的参数的描述 :

  • y是响应变量。
  • x是预测变量。
  • a和b是作为数字常数的系数。

glm()函数

逻辑回归中glm()函数的基本语法是:

glm(formula,data,family)

以下是所使用的参数的描述:

  • formula是表示变量之间的关系的符号。
  • data是给出这些变量的值的数据集。
  • family是R语言对象来指定模型的细节。 它的值是二项逻辑回归。

举个栗子:

内置数据集“mtcars”描述具有各种发动机规格的汽车的不同型号。
在“mtcars”数据集中,传输模式(自动或手动)由am列描述,它是一个二进制值(0或1)。 我们可以在列“am”和其他3列(hp,wt和cyl)之间创建逻辑回归模型。

输入:

# Select some columns form mtcars.
input <- mtcars[,c("am","cyl","hp","wt")]
print(head(input))

输出:

                    am c
### 如何用R语言实现逻辑回归分析 逻辑回归种广泛应用于分类问题的统计方法,在R语言中有多种方式可以实现这功能。以下是基于 `glm()` 函数的个典型例子及其详细说明。 #### 使用`glm()`函数进行逻辑回归建模 在R语言中,可以通过内置的`glm()`函数轻松完成逻辑回归模型的构建。该函数允许指定响应变量和预测变量之间的关系,并通过参数`family=binomial`指明这是个二分类问题。 ```r # 加载必要的库 (如果需要额外的数据处理可视化) library(ggplot2) # 假设我们有个名为train_data的数据框,其中包含特征列以及目标变量target model <- glm(target ~ ., data = train_data, family = binomial()) # 查看模型摘要以了解系数估计和其他统计量 summary(model) ``` 上述代码片段展示了如何利用整个数据集中除目标变量外的所有其他字段作为输入特征来进行建模[^3]。这里的关键点在于: - **formula**: 定义了因变量(`target`)与自变量之间关系的形式化表达式。 - **data**: 提供实际使用的训练样本集合。 - **family**: 设置分布族类型;对于逻辑回归而言,应选择`binomial`表示伯努利者多项分布下的最大似然估计过程[^4]。 #### 示例解读 假设我们的数据集`train_data`结构如下所示: | feature_1 | feature_2 | ... | target | |-----------|------------|-----|---------| | value | value | ... | 0/1 | 执行上面提到的操作之后,就可以得到关于各个影响因素的重要性程度量化指标——即所谓的回归系数。这些数值反映了当其它条件不变时单位变化所带来的概率改变幅度大小。 另外值得注意的是,在完成初步拟合工作以后还需要进步验证模型性能好坏与否。这通常涉及以下几个方面的工作流程: 1. 利用测试子集评估准确性; 2. 绘制ROC曲线并计AUC面积值衡量区分能力; 3. 对新观测实例做出类别归属判断等等。 #### 可视化结果 为了更直观理解所得结论还可以借助图形展示手段辅助阐释。比如下面这段脚本就演示了怎样绘制条最佳分割界限来分开两类人群群组成员的位置分布情况。 ```r # 创建个新的网格空间用于绘图目的 newdata <- expand.grid( feature_1 = seq(min(train_data$feature_1), max(train_data$feature_1), length.out = 100), feature_2 = seq(min(train_data$feature_2), max(train_data$feature_2), length.out = 100) ) # 预测每点属于正类别的可能性 newdata$prob <- predict(model, newdata=newdata, type="response") # 添加决策边界标记 decision_boundary <- contourLines(newdata$feature_1, newdata$feature_2, z = as.matrix(newdata$prob), levels=c(0.5))[[1]] ggplot(data=train_data,aes(x=feature_1,y=feature_2,color=factor(target))) + geom_point()+theme_minimal()+ scale_color_manual(values=c("#F8766D","#00BFC4"))+ labs(title='Logistic Regression Decision Boundary',color='Target')+coord_fixed(ratio=1)+ annotate('path',x=decision_boundary$x,y=decision_boundary$y,lwd=1,col='black') ``` 此部分不仅有助于确认理论推导是否合理有效而且还能增强报告呈现效果提升说服力水平。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值