论文阅读:A Survey on Bias and Fairness in Machine Learning(ACM)

这篇综述探讨了人工智能系统中的偏见和不公平问题,强调了数据和算法作为问题的两大来源。文章通过实例展示了不公平决策如何影响司法、人脸识别等领域,并概述了公平的定义和潜在危害。研究人员提出了解决偏见的方法,涵盖了机器学习、深度学习和自然语言处理等多个领域。未来的工作仍聚焦于减少和消除这些系统中的偏见。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

按中李沐的读论文方法只看摘要、结论和介绍,有兴趣的再看模型和实验。

摘要

随着人工智能系统和应用在我们日常生活中的广泛使用,在设计这些类型的系统时,考虑公平问题是很重要的。这种系统可能用于许多敏感的环境中,以作出重要的和改变生活的决定。因此,确保这些决定不反映对某些群体或人群的歧视行为是至关重要的。我们最近看到了机器学习、自然语言处理和深度学习的工作,它们在不同的子领域解决了很多问题。随着这些系统的商业化,研究人员逐渐意识到这些应用程序可能包含的偏见,并试图解决它们。在这篇综述中,我们调查了不同的应用程序,这些应用程序以不同的方式体现了偏见,我们列出了可能影响AI应用程序的不同偏见来源。然后,我们为机器学习的公平定义创建了一个分类。此外,我们研究了人工智能的不同领域和子领域,展示了研究人员在最先进的方法中观察到的不公平问题,以及他们如何试图解决这些问题。为了缓解人工智能系统中的偏见问题,未来仍有许多方向和解决方案可以采取。我们希望这项调查将激励研究人员在不久的将来通过观察各自领域的现有工作来解决这些问题。

CONCLUSION

在这篇综述中,我们介绍了人工智能系统可能产生负面影响的偏见和不公平问题。主要从两个方面来看这个问题:数据和算法。我们阐述了其中的一些问题,并说明了为什么公平是一个重要的问题,同时提供了不公平可能对社会造成的潜在的现实危害的例子——例如司法系统中的应用、人脸识别和推广算法。然后我们回顾了研究人员提出的公平和偏见的定义。为了进一步激发读者的兴趣,我们提供了一些不同领域解决可能影响人工智能系统的偏见的工作,以及人工智能的不同方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值