Python超轻量数据库之SQLite

欢迎关注【无量测试之道】公众号,回复【领取资源】,
Python编程学习资源干货、
Python+Appium框架APP的UI自动化、
Python+Selenium框架Web的UI自动化、
Python+Unittest框架API自动化、

资源和代码 免费送啦~
文章下方有公众号二维码,可直接微信扫一扫关注即可。

 

1、什么是 SQLite

SQLite3 可使用 sqlite3 模块与 Python 进行集成。sqlite3 模块是由 Gerhard Haring 编写的。它提供了一个与 PEP 249 描述的 DB-API 2.0 规范兼容的 SQL 接口。您不需要单独安装该模块,因为 Python 2.5.x 以上版本默认自带了该模块。

2、SQLite有什么优点

  • 源代码不受版权限制,真正的自由,开源和免费

  • 无务器,不需要一个单独的服务器进程或者操作的系统

  • 一个SQLite 数据库是存储在一个单一的跨平台的磁盘文件

  • 零配置,因为其本身就是一个文件,不需要安装或管理,轻松携带

  • 不需要任何外部的依赖,所有的操作等功能全部都在自身集成

  • 轻量级,SQLite本身是C写的,体积很小,经常被集成到各种应用程序中

3、SQLite 的使用场景有哪些

1).    小型网站,SQLite适用于中小规模流量的网站
2).    嵌入式设备,SQLite适用于手机, PDA, 机顶盒, 以及其他嵌入式设备. 作为一个嵌入式数据库它也能够很好的应用于客户端程序.
3).    数据库教学,SQLite 支持 SQL92(SQL2)标准的大多数查询语言的功能。
4).    本地应用程序,其单一磁盘文件的特性,并且不支持远程连接,使其适用于本地的应用程序,如PC客户端软件.

4、使用示例展示

import sqlite3

class conndb():
    list1=[]
    def __init__(self):
        self.conn = sqlite3.connect('testqqs.db') #存在就连接,不存在就创建数据库
        self.c = self.conn.cursor() #获取操作数据库的游标

    def query_sql(self,sql): #执行select并返回数据的方法
        result=self.c.execute(sql)
        for res in result:
            self.list1.append(res[0])
        print(list(set(self.list1)))
        self.conn.commit()
        self.conn.close()

    def execute_sql(self,sql): #执行除select外语句的方法
        result=self.c.execute(sql)
        print("the result is:",result)
        if "create table" in str(sql).lower():
            print("Table created successfully")
        else:
            print("the createdb.sql execute is successfully")
        self.conn.commit()
        self.conn.close()

if __name__=="__main__":
    table1='''
    create TABLE IF NOT EXISTS table0607( 
     id  INTEGER   PRIMARY KEY AUTOINCREMENT,
        `qq_number` varchar(255) DEFAULT NULL,
        `qq_sex` varchar(255) DEFAULT NULL,
        `qq_years` varchar(255) DEFAULT NULL,
        `qq_injoin_time` varchar(255) DEFAULT NULL,
        `qq_say_time` varchar(255) DEFAULT NULL
     );
    '''
    insert_sql="INSERT INTO qq_infos (id,qq_number,qq_sex,qq_years,qq_injoin_time,qq_say_time) VALUES (1,'625888888','女','130年','2015/04/21','吐槽')"
    query_sql="select count(*) from qq_infos"
    delete_sql="delete from qq_infos where id=765"
    update_sql="update qq_infos set qq_number='625888888' where id=1"
    db=conndb()
    sql="select qq_number from table0607 where id>4366"
    db.execute_sql(table1)
    db.query_sql(sql)

总结:今天分享的内容,代码示例部分还是需要大家亲自动手实操,学习效果会更好。

备注:我的个人公众号已正式开通,致力于测试技术的分享,包含:大数据测试、功能测试,测试开发,API接口自动化、测试运维、UI自动化测试等,微信搜索公众号:“无量测试之道”,或扫描下方二维码:

 添加关注,一起共同成长吧。

数据库的名字叫WawaDB,是用python实现的。由此可见python是灰常强大啊! 简介 记录日志的需求一般是这样的: 只追加,不修改,写入按时间顺序写入; 大量写,少量读,查询一般查询一个时间段的数据; MongoDB的固定集合很好的满足了这个需求,但是MongoDB占内存比较大,有点儿火穿蚊子,小题大做的感觉。 WawaDB的思路是每写入1000条日志,在一个索引文件里记录下当前的时间和日志文件的偏移量。 然后按时间询日志时,先把索引加载到内存中,用二分法查出时间点的偏移量,再打开日志文件seek到指定位置,这样就能很快定位用户需要的数据并读取,而不需要遍历整个日志文件。 性能 Core 2 P8400,2.26GHZ,2G内存,32 bit win7 写入测试: 模拟1分钟写入10000条数据,共写入5个小时的数据, 插入300万条数据,每条数据54个字符,用时2分51秒 读取测试:读取指定时间段内包含某个子串的日志 数据范围 遍历数据量 结果数 用时(秒) 5小时 300万 604 6.6 2小时 120万 225 2.7 1小时 60万 96 1.3 30分钟 30万 44 0.6 索引 只对日志记录的时间做索引, 简介里大概说了下索引的实现,二分查找肯定没B Tree效率高,但一般情况下也差不了一个数量级,而且实现特别简单。 因为是稀疏索引,并不是每条日志都有索引记录它的偏移量,所以读取数据时要往前多读一些数据,防止漏读,等读到真正所需的数据时再真正给用户返回数据。 如下图,比如用户要读取25到43的日志,用二分法找25,找到的是30所在的点, 索 引:0 10 20 30 40 50 日志:|.........|.........|.........|.........|.........|>>>a = [0, 10, 20, 30, 40, 50]>>>bisect.bisect_left(a, 35)>>>3>>>a[3]>>>30>>>bisect.bisect_left(a, 43)>>>5>>>a[5]>>>50 所以我们要往前倒一些,从20(30的前一个刻度)开始读取日志,21,22,23,24读取后因为比25小,所以扔掉, 读到25,26,27,...后返回给用户 读取到40(50的前一个刻度)后就要判断当前数据是否大于43了,如果大于43(返回全开区间的数据),就要停止读了。 整体下来我们只操作了大文件的很少一部分就得到了用户想要的数据。 缓冲区 为了减少写入日志时大量的磁盘写,索引在append日志时,把buffer设置成了10k,系统默认应该是4k。 同理,为了提高读取日志的效率,读取的buffer也设置了10k,也需要根据你日志的大小做适当调整。 索引的读写设置成了行buffer,每满一行都要flush到磁盘上,防止读到不完整的索引行(其实实践证明,设置了行buffer,还是能读到半拉的行)。 查询 啥?要支持SQL,别闹了,100行代码怎么支持SQL呀。 现在查询是直接传入一个lambada表达式,系统遍历指定时间范围内的数据行时,满足用户的lambada条件才会返回给用户。 当然这样会多读取很多用户不需要的数据,而且每行都要进行lambda表达式的运算,不过没办法,简单就是美呀。 以前我是把一个需要查询的条件和日志时间,日志文件偏移量都记录在索引里,这样从索引里查找出符合条件的偏移量,然后每条数据都如日志文件里seek一次,read一次。这样好处只有一个,就是读取的数据量少了,但缺点有两个: 索引文件特别大,不方便加载到内存中 每次读取都要先seek,貌似缓冲区用不上,特别慢,比连续读一个段的数据,并用lambda过滤慢四五倍 写入 前面说过了,只append,不修改数据,而且每行日志最前面是时间戳。 多线程 查询数据,可以多线程同时查询,每次查询都会打开一个新的日志文件的描述符,所以并行的多个读取不会打架。 写入的话,虽然只是append操作,但不确认多线程对文件进行append操作是否安全,所以建议用一个队列,一个专用线程进行写入。 锁 没有任何锁。 排序 默认查询出来的数据是按时间正序排列,如需其它排序,可取到内存后用python的sorted函数排序,想怎么排就怎么排。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wu_Candy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值