一、安装Anaconda 或者Miniconda,这里不再赘述,conda的具体安装和使用自行百度。
二、查看并升级Nvidia显卡驱动
1、在win10系统里,点击右下角的向上箭头,看到缩略图,英伟达的logo下方有个“!”,提示驱动有更新,若已是最新版本,跳过以下2、3两步。
2、点击后跳转到NVIDIA官网,点击“自动驱动程序更新”下的下载按钮;
3、下载完成并安装后重启计算机,打开桌面上新安装的GeForce Experience程序,进入界面后,完成登录或者注册后,下载最新版本的GeForce Game Ready Driver,下载完成后安装即可,安装完成后可能会需要重启计算机;
4、查看当前显卡驱动版本,鼠标右键,打开NVIDIA控制面板,选择 “帮助”下的“系统信息”,可看到当前的显卡驱动版本,
三、安装CUDA
1、下载正确版本的cuda:
进入Nvidia CUDA下载官网,下载对应版本的CUDA-Toolkit,首先在官网查看对应Release Notes版本发布信息:
由于conda的清华镜像源还没有cuda10.2的版本,这里我们可下载10.1版本, CUDA10.1下载地址。
2、安装CUDA:
点击下载好的exe安装程序后,检查系统兼容性后选择自定义安装,选择安装以下4个组件即可,点击下一步,安装完成。
如果安装完后没有报错,并且C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1和C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1目录路径都存在的话,可进行下一步设置环境变量。
3、设置环境变量
在系统变量中添加以下变量(与Path同级位置)
CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V9_1 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
##正常情况下上面两个电脑直接生成了
CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64
依次填入后,找到path依次点击新建,将 %CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_BIN_PATH%;%CUDA_SDK_LIB_PATH%;填完后如下图,全部安装好后一定要记得重启!。
4、测试CUDA是否安装成功:
进入cuda安装路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite
同样用cmd,分别输入deviceQuery.exe 和 bandwidthTest.exe,若都显示 Rsult=PASS 则说明通过,否则需要重新安装。
四、安装pytorch
1、conda添加清华镜像源:
由于从官方的conda源中下载速度过于缓慢,我们需要配置清华镜像源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
另外为了保险起见,建议同时添加第三方conda源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
2、创建并进入虚拟环境
conda create -n pytorch
conda activate pytorch
3、安装pytorch
进入pytorch官网,根据Python和CUDA选择对应的版本,然后官方给出提示可通过运行:
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
但是这里一定要注意,去掉-c pytorch,安装的时候才会默认从清华源下载相应的包,因此这里用命令行:
conda install pytorch torchvision cudatoolkit=10.1
接着等待安装成功就好了。
最后可以通过命令行验证一下,可以看到已经正确安装PyTorch1.4.0,且可以调用GPU。
import torch
print(torch.__version__)
print("gpu", torch.cuda.is_available())
打印结果:
至此,pytorch以及GPU显卡的配置大功告成!