win10下pytorch和CUDA的安装完整过程

一、安装Anaconda 或者Miniconda,这里不再赘述,conda的具体安装和使用自行百度。

二、查看并升级Nvidia显卡驱动

1、在win10系统里,点击右下角的向上箭头,看到缩略图,英伟达的logo下方有个“!”,提示驱动有更新,若已是最新版本,跳过以下2、3两步。

 2、点击后跳转到NVIDIA官网,点击“自动驱动程序更新”下的下载按钮;

 3、下载完成并安装后重启计算机,打开桌面上新安装的GeForce Experience程序,进入界面后,完成登录或者注册后,下载最新版本的GeForce Game Ready Driver,下载完成后安装即可,安装完成后可能会需要重启计算机;

4、查看当前显卡驱动版本,鼠标右键,打开NVIDIA控制面板,选择 “帮助”下的“系统信息”,可看到当前的显卡驱动版本,

三、安装CUDA

 1、下载正确版本的cuda:

进入Nvidia CUDA下载官网,下载对应版本的CUDA-Toolkit,首先在官网查看对应Release Notes版本发布信息:

由于conda的清华镜像源还没有cuda10.2的版本,这里我们可下载10.1版本, CUDA10.1下载地址

2、安装CUDA:

点击下载好的exe安装程序后,检查系统兼容性后选择自定义安装,选择安装以下4个组件即可,点击下一步,安装完成。

 如果安装完后没有报错,并且C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1和C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1目录路径都存在的话,可进行下一步设置环境变量。

3、设置环境变量

在系统变量中添加以下变量(与Path同级位置)

CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V9_1 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1

##正常情况下上面两个电脑直接生成了

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

依次填入后,找到path依次点击新建,将 %CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_BIN_PATH%;%CUDA_SDK_LIB_PATH%;填完后如下图,全部安装好后一定要记得重启!。

 

4、测试CUDA是否安装成功:

进入cuda安装路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite

同样用cmd,分别输入deviceQuery.exe 和 bandwidthTest.exe,若都显示 Rsult=PASS 则说明通过,否则需要重新安装。

 

四、安装pytorch

1、conda添加清华镜像源:

由于从官方的conda源中下载速度过于缓慢,我们需要配置清华镜像源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

另外为了保险起见,建议同时添加第三方conda源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

2、创建并进入虚拟环境

conda create -n pytorch
conda activate pytorch

 3、安装pytorch

进入pytorch官网,根据Python和CUDA选择对应的版本,然后官方给出提示可通过运行:

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
但是这里一定要注意,去掉-c pytorch,安装的时候才会默认从清华源下载相应的包,因此这里用命令行:

conda install pytorch torchvision cudatoolkit=10.1

接着等待安装成功就好了。

最后可以通过命令行验证一下,可以看到已经正确安装PyTorch1.4.0,且可以调用GPU。

import torch

print(torch.__version__)
print("gpu", torch.cuda.is_available())

打印结果:

至此,pytorch以及GPU显卡的配置大功告成!
 

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值