图像质量评价(6)美学评估总结

参考博客:

https://blog.csdn.net/God_68/article/details/81534845

参考微信公众号:

https://mp.weixin.qq.com/s?__biz=MzI4MjU4MzAyMg==&mid=2247483714&idx=1&sn=6ea19697fb803069b1726b19e65e60b3&chksm=eb968bc3dce102d5353af9b71cae1433b3e1d4b77d86369f58096de8239e9b1c307949fb7960&mpshare=1&scene=23&srcid=0730nEt1dCd4kt3B5vkmtt2E#rd

 

一、数据库和目前现状

目前图像美学评估:最好的数据集就是AVA,有25万+

其他的即使加上也没什么效果,因此美学的如果要优化,就要标注数据集。

如果要特别好的话,需要标注类似于AVA的10个等级的数据,很难。

 

美学数据集:

AVA(2012):255530幅,1-10分。每幅图被评分的人数范围为78-539,平均210。

                         200多篇论文引用

AADB(2016):8种美学因素(平衡、颜色和谐型、趣味、景深、光照、主体、三分、颜色丰富性)的二值分类评价(在单个美学因素上的“好”与“不好”)。因素评价太多简单。

PCCD(2017):评分+分布+多人语言评论,但太少4307幅

AROD(2018):38万幅,图像查看和点赞次数计算得到美学评分

 

 

二、美学评估算法

1、NIMA:google,2017

训练集:AVA

思路:将质量评价当前计算1-10类的分类分布

 

论文:

https://arxiv.org/abs/1709.05424

 

github资源:

(1)1个模型

非官方复现代码:

https://github.com/titu1994/neural-image-assessment

最推荐:NasNet效果

https://github.com/tfriedel/neural-image-assessment

nasnet,mobilenet

(2)2个模型:美学,技术

https://github.com/idealo/image-quality-assessment/tree/master/models/MobileNet

mobilenet

 

相关:

https://blog.csdn.net/qq_22194315/article/details/82713283

NIMA解释

http://server.chinabyte.com/125/14395125.shtml?S=9rrf3v9huog

https://cloud.tencent.com/developer/news/49602

https://blog.csdn.net/yH0VLDe8VG8ep9VGe/article/details/78849545

https://blog.csdn.net/qq_22194315/article/details/82713283

知乎链接:

https://zhuanlan.zhihu.com/p/33194024

 

2、ILGNet:北京电子科技,2016

论文:

http://jinxin.me/downloads/papers/019-WCSP2016a/ILGNet-Final.pdf

github:

https://github.com/BestiVictory/ILGnet

caffe,模型大小:500M

 

主要思路:将质量评价当作分类,GoogleNet模型做fine-tune

增强数据集:AVA

 

三、我的思考:

美学我打算直接用,不打算做个性化了。

标数据是个很大的问题。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值