参考博客:
https://blog.csdn.net/God_68/article/details/81534845
参考微信公众号:
一、数据库和目前现状
目前图像美学评估:最好的数据集就是AVA,有25万+
其他的即使加上也没什么效果,因此美学的如果要优化,就要标注数据集。
如果要特别好的话,需要标注类似于AVA的10个等级的数据,很难。
美学数据集:
AVA(2012):255530幅,1-10分。每幅图被评分的人数范围为78-539,平均210。
200多篇论文引用
AADB(2016):8种美学因素(平衡、颜色和谐型、趣味、景深、光照、主体、三分、颜色丰富性)的二值分类评价(在单个美学因素上的“好”与“不好”)。因素评价太多简单。
PCCD(2017):评分+分布+多人语言评论,但太少4307幅
AROD(2018):38万幅,图像查看和点赞次数计算得到美学评分
二、美学评估算法
1、NIMA:google,2017
训练集:AVA
思路:将质量评价当前计算1-10类的分类分布
论文:
https://arxiv.org/abs/1709.05424
github资源:
(1)1个模型
非官方复现代码:
https://github.com/titu1994/neural-image-assessment
最推荐:NasNet效果
https://github.com/tfriedel/neural-image-assessment
nasnet,mobilenet
(2)2个模型:美学,技术
https://github.com/idealo/image-quality-assessment/tree/master/models/MobileNet
mobilenet
相关:
https://blog.csdn.net/qq_22194315/article/details/82713283
NIMA解释
http://server.chinabyte.com/125/14395125.shtml?S=9rrf3v9huog
https://cloud.tencent.com/developer/news/49602
https://blog.csdn.net/yH0VLDe8VG8ep9VGe/article/details/78849545
https://blog.csdn.net/qq_22194315/article/details/82713283
知乎链接:
https://zhuanlan.zhihu.com/p/33194024
2、ILGNet:北京电子科技,2016
论文:
http://jinxin.me/downloads/papers/019-WCSP2016a/ILGNet-Final.pdf
github:
https://github.com/BestiVictory/ILGnet
caffe,模型大小:500M
主要思路:将质量评价当作分类,GoogleNet模型做fine-tune
增强数据集:AVA
三、我的思考:
美学我打算直接用,不打算做个性化了。
标数据是个很大的问题。