目录
一、背景介绍
1.1 分类以及各自的局限
根据评价的内容分为:客观质量评价,美学评价
根据评价训练时用到的参考图像信息多少分为:全参考、半参考、无参考
(高质量--低质量)
全参考的限制在于图像库,高质量和低质量图像库,以及打分。
无参考不需要参考图像,是目前主要的研究方向。
美学评价,不存在参考的问题,目前主要是看成分类或者分类的问题。
1.2 图像库
(1)客观评价图像库
(2)美学评价图像库
AVA(2012):255530幅,1-10分。每幅图被评分的人数范围为78-539,平均210。
200多篇论文引用
AADB(2016):8种美学因素(平衡、颜色和谐型、趣味、景深、光照、主体、三分、颜色丰富性)的二值分类评价(在单个美学因素上的“好”与“不好”)。因素评价太多简单。
PCCD(2017):评分+分布+多人语言评论,但太少4307幅
AROD(2018):38万幅,图像查看和点赞次数计算得到美学评分
1.3 评价图像质量的指标
通常比较模型客观值与观测的主观值之间的差异和相关性。常见的2种评估指标是线性相关系数(Linear Correlation Coefficient, LCC)和Spearman秩相关系数(Spearman's Rank Order Correlation Coefficient, SROCC)。
(1)LCC
LCC也叫Pearson相关系数(PLCC),描述了主、客观评估之间的线性相关性
(2)SROCC
(3)KROCC,RMSE
Kendall秩相关系数(Kendall Rank Order Correlation Coefficient,KROCC)、均方根误差(Root Mean Square Error, RMSE)等评估指标。KROCC的性质和SROCC一样,也衡量了算法预测的单调性。RMSE计算MOS与算法预测值之间的绝对误差,衡量算法预测的准确性。