图像质量评价综述:美学+客观(原创)

目录

一、背景介绍

1.1 分类以及各自的局限

1.2 图像库

1.3 评价图像质量的指标

二、客观质量评估

2.1 传统算法评估FR、RR、BR/NR

2.1.1 FR-IQA

2.1.2 RR-IQA

2.1.3 NR-IQA

2.2 深度学习算法

2.3 实验结果

2.4 RankIQA介绍

2.4.1 算法流程

2.4.2 资源汇总

三、美学质量评估

3.1 目前现状

3.2 算法1:NIMA,2017,google

3.3 算法2:ILGNet,2016,北京电子科技学院


 

一、背景介绍

1.1 分类以及各自的局限

根据评价的内容分为:客观质量评价,美学评价

根据评价训练时用到的参考图像信息多少分为:全参考、半参考、无参考

(高质量--低质量)

全参考的限制在于图像库,高质量和低质量图像库,以及打分。

无参考不需要参考图像,是目前主要的研究方向。

 

美学评价,不存在参考的问题,目前主要是看成分类或者分类的问题。

 

1.2 图像库

(1)客观评价图像库

 

(2)美学评价图像库

AVA(2012):255530幅,1-10分。每幅图被评分的人数范围为78-539,平均210。

                         200多篇论文引用

AADB(2016):8种美学因素(平衡、颜色和谐型、趣味、景深、光照、主体、三分、颜色丰富性)的二值分类评价(在单个美学因素上的“好”与“不好”)。因素评价太多简单。

PCCD(2017):评分+分布+多人语言评论,但太少4307幅

AROD(2018):38万幅,图像查看和点赞次数计算得到美学评分

 

1.3 评价图像质量的指标

通常比较模型客观值与观测的主观值之间的差异和相关性。常见的2种评估指标是线性相关系数(Linear Correlation Coefficient, LCC)和Spearman秩相关系数(Spearman's Rank Order Correlation Coefficient, SROCC)。

(1)LCC

LCC也叫Pearson相关系数(PLCC),描述了主、客观评估之间的线性相关性

 

(2)SROCC

 

(3)KROCC,RMSE

Kendall秩相关系数(Kendall Rank Order Correlation Coefficient,KROCC)、均方根误差(Root Mean Square Error, RMSE)等评估指标。KROCC的性质和SROCC一样,也衡量了算法预测的单调性。RMSE计算MOS与算法预测值之间的绝对误差,衡量算法预测的准确性。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值