多种方法与多语言实现“和为 K 的子数组”问题
摘要
在本文中,我们将探讨解决“和为 K 的子数组”问题的多种算法和编程语言实现。这个问题要求我们统计给定数组中和为特定整数 k 的子数组的个数。我们将分析几种不同的算法,并提供 Python、Java 和 C++ 的实现。
1. 问题描述
给定一个整数数组 nums
和一个整数 k
,返回数组中和为 k
的子数组的个数。
2. 输入和输出格式
- 输入:整数数组
nums
和整数k
- 输出:和为
k
的子数组的个数
3. 示例
- 示例 1:
nums = [1,1,1]
,k = 2
输出:2
- 示例 2:
nums = [1,2,3]
,k = 3
输出:2
4. 约束条件
1 <= nums.length <= 2 * 10^4
-1000 <= nums[i] <= 1000
-10^7 <= k <= 10^7
5. 算法分析
- 暴力解法:枚举数组中所有可能的子数组,计算和并统计等于
k
的子数组个数。 - 前缀和 + 哈希表:计算数组的前缀和,并使用哈希表存储之前遇到的前缀和,对于每个前缀和
prefix
,检查prefix - k
是否已存在。
6. 多语言实现
我们将使用 Python、Java 和 C++ 来实现前缀和 + 哈希表法。
Python 实现
def subarraySum(nums, k):
count, prefix_sum, sum_map = 0, 0, {
0: 1}
for num in nums:
prefix_sum += num
if prefix_sum - k in sum_map:
count += sum_map[prefix_sum - k]
sum_map[prefix_sum] = sum_map.get(prefix_sum, 0) + 1
ret