微分几何笔记(2):微分流形的例子

在这里插入图片描述

我们知道[公式]中存在一个整体的坐标系,使得每个点都有一个坐标与之一一对应,大学之前学习的几何内容,都是在[公式]空间中处理问题。但是存在一些空间,在其上不存在一个整体的坐标系,如三维空间中的球面:[公式]。要想在其上处理问题,就需要将其分为若干个部分,在每个部分上建立坐标系,这就引出了微分流形的概念。

刚接触微分流形的概念理解起来还是比较困难,因此找来一些具体的例子,可以帮助大家理解微分流形的概念。

微分流形

例1: n n n维球面 S n = { ( x 1 , … , x n + 1 ) ∈ R n + 1 ∣ ∑ i = 1 n + 1 x i 2 = 1 } \mathrm{S}^n=\{(x_1,\dots,x_{n+1})\in \mathrm{R}^{n+1}|\sum\limits_{i=1}^{n+1}x_i^2=1\} Sn={(x1,,xn+1)Rn+1i=1n+1xi2=1} n n n C ∞ C^\infty C微分流形。

证明: S n \mathrm{S}^n Sn的拓扑为其作为 R n + 1 \mathrm{R}^{n+1} Rn+1子空间的拓扑,则 S n \mathrm{S}^n Sn是Hausdorff拓扑空间。令
U i + = { ( x 1 , … , x n + 1 ) ∈ S n ∣ x i > 0 } U i − = { ( x 1 , … , x n + 1 ) ∈ S n ∣ x i < 0 } U_i^+=\{(x_1,\dots,x_{n+1})\in\mathrm{S}^n|x_i>0\}\\ U_i^-=\{(x_1,\dots,x_{n+1})\in\mathrm{S}^n|x_i<0\} Ui+={(x1,,xn+1)Snxi>0}Ui={(x1,,xn+1)Snxi<0}

φ i + : U i + → R n ,   ( x 1 , … , x n + 1 ) ↦ ( x 1 , … , x i ^ , … , x n + 1 ) φ i − : U i − → R n ,   ( x 1 , … , x n + 1 ) ↦ ( x 1 , … , x i ^ , … , x n + 1 ) \varphi_i^+:U_i^+\to \mathrm{R}^n,\ (x_1,\dots,x_{n+1})\mapsto (x_1,\dots,\hat{x_i},\dots,x_{n+1})\\ \varphi_i^-:U_i^-\to \mathrm{R}^n,\ (x_1,\dots,x_{n+1})\mapsto (x_1,\dots,\hat{x_i},\dots,x_{n+1}) φi+:Ui+Rn, (x1,,xn+1)(x1,,xi^,,xn+1)φi:UiRn, (x1,,xn+1)(x1,,xi^,,xn+1)

其中 i = 1 , 2 , … , n + 1 i=1,2,\dots,n+1 i=1,2,,n+1,则 φ i + \varphi_i^+ φi+ φ i − \varphi_i^- φi都是可逆映射,有
( φ i + ) − 1 : φ ( U i + ) → U i + ,   ( x 1 , … , x n ) ↦ ( x 1 , … , x i − 1 , 1 − ∑ j = 1 n x j 2 , x i , … , x n ) ( φ i − ) − 1 : φ ( U i − ) → U i − ,   ( x 1 , … , x n ) ↦ ( x 1 , … , x i − 1 , − 1 − ∑ j = 1 n x j 2 , x i , … , x n ) . (\varphi_i^+)^{-1}:\varphi(U_i^+)\to U_i^+,\ (x_1,\dots,x_n)\mapsto (x_1,\dots,x_{i-1},\sqrt{1-\sum\limits_{j=1}^nx_j^2},x_{i},\dots,x_n)\\ (\varphi_i^-)^{-1}:\varphi(U_i^-)\to U_i^-,\ (x_1,\dots,x_n)\mapsto (x_1,\dots,x_{i-1},-\sqrt{1-\sum\limits_{j=1}^nx_j^2},x_{i},\dots,x_n). (φi+)1:φ(Ui+)Ui+, (x1,,xn)(x1,,xi1,1j=1nxj2 ,xi,,xn)(φi)1:φ(Ui)Ui, (x1,,xn)(x1,,xi1,1j=1nxj2 ,xi,,xn).
考虑映射
φ 2 − ( φ 1 + ) − 1 : φ 1 + ( U 1 + ∩ U 2 − ) → φ 2 − ( U 1 + ∩ U 2 − ) ( x 1 , … , x n ) ↦ ( 1 − ∑ j = 1 n x j 2 , x 2 , … , x n ) , \varphi_2^-(\varphi_1^+)^{-1}:\varphi_1^+(U_1^+\cap U_2^-)\to\varphi_2^-(U_1^+\cap U_2^-)\\ (x_1,\dots,x_n)\mapsto (\sqrt{1-\sum\limits_{j=1}^nx_j^2},x_2,\dots,x_n), φ2(φ1+)1:φ1+(U1+U2)φ2(U1+U2)(x1,,xn)(1j=1nxj2 ,x2,,xn),
可知 φ 2 − ( φ 1 + ) − 1 \varphi_2^-(\varphi_1^+)^{-1} φ2(φ1+)1 C ∞ C^\infty C映射,因此坐标图 ( U 1 + , φ 1 + ) (U_1^+,\varphi_1^+) (U1+,φ1+) ( U 2 − , φ 2 − ) (U_2^-,\varphi_2^-) (U2,φ2) C ∞ C^\infty C相容的。同理可得坐标图册 { ( U i ± , φ i ± ) ∣ i = 1 , 2 , … , n + 1 } \{(U_i^\pm,\varphi_i^\pm)|i=1,2,\dots,n+1\} {(Ui±,φi±)i=1,2,,n+1} C ∞ C^\infty C相容坐标图册,因此唯一确定 S n \mathrm{S}^n Sn上的 C ∞ C^\infty C微分结构,因此 S n \mathrm{S}^n Sn n n n C ∞ C^\infty C微分流形。

例2: 实射影空间 R P n \mathrm{R}\mathrm{P}^n RPn n n n C ∞ C^\infty C微分流形。

证明: 实射影空间 R P n \mathrm{R}\mathrm{P}^n RPn是Hausdorff空间。令 X = R n + 1 − 0 X=\mathrm{R}^{n+1}-{0} X=Rn+10,在 X X X上定义等价关系 ∼ \sim :对 ∀ x , y ∈ X \forall x,y\in X x,yX x ∼ y x\sim y xy当且仅当存在 t ∈ R t\in\mathrm{R} tR t > 0 t>0 t>0使得 y = t x y=tx y=tx,则 R P n \mathrm{R}\mathrm{P}^n RPn即为 X / ∼ X/\sim X/.令
U i = { [ ( x 1 , … , x n + 1 ) ] ∣ ( x 1 , … , x n + 1 ) ∈ X ∣ x i ≠ 0 } ,   i = 1 , 2 , … , n + 1 U_i=\{[(x_1,\dots,x_{n+1})]|(x_1,\dots,x_{n+1})\in X|x_i\ne 0\},\ i=1,2,\dots,n+1 Ui={[(x1,,xn+1)](x1,,xn+1)Xxi=0}, i=1,2,,n+1
其中 [ x ] [x] [x]表示 x ∈ X x\in X xX关于等价关系 ∼ \sim 的等价类。令 ( x 1 , … , x n + 1 ) ∈ X (x_1,\dots,x_{n+1})\in X (x1,,xn+1)X x i ≠ 0 x_i\ne 0 xi=0,对 ∀ ( y 1 , … , y n + 1 ) ∈ X \forall (y_1,\dots,y_{n+1})\in X (y1,,yn+1)X,可知
( x 1 x i , … , x n + 1 x i ) = ( y 1 y i , … , y n + 1 y i )    ⟺    ( x 1 , … , x n + 1 ) ∼ ( y 1 , … , y n + 1 ) (\frac{x_1}{x_i},\dots,\frac{x_{n+1}}{x_i})=(\frac{y_1}{y_i},\dots,\frac{y_{n+1}}{y_i})\iff(x_1,\dots,x_{n+1})\sim(y_1,\dots,y_{n+1}) (xix1,,xixn+1)=(yiy1,,yiyn+1)(x1,,xn+1)(y1,,yn+1)
因此,下面的映射 φ i \varphi_i φi是良定义的单射
φ i : U i → R n ,   [ ( x 1 , … , x n + 1 ) ] ↦ ( x 1 x i , … , x i − 1 x i , x i + 1 x i , … , x n + 1 x i ) ,   i = 1 , 2 , … , n + 1. \varphi_i:U_i\to \mathrm{R}^n,\ [(x_1,\dots,x_{n+1})]\mapsto (\frac{x_1}{x_i},\dots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\dots,\frac{x_{n+1}}{x_i}),\ i=1,2,\dots,n+1. φi:UiRn, [(x1,,xn+1)](xix1,,xixi1,xixi+1,,xixn+1), i=1,2,,n+1.
因此 φ i \varphi_i φi存在逆映射
φ i − 1 : φ i ( U i ) → U i ,   ( x 1 , … , x n ) ↦ [ ( x 1 , … , x i − 1 , 1 , x i + 1 , … , x n + 1 ) ] . \varphi_i^{-1}:\varphi_i(U_i)\to U_i,\ (x_1,\dots,x_n)\mapsto [(x_1,\dots,x_{i-1},1,x_{i+1},\dots,x_{n+1})]. φi1:φi(Ui)Ui, (x1,,xn)[(x1,,xi1,1,xi+1,,xn+1)].
考虑映射
φ 2 ( φ 1 ) − 1 : φ 1 ( U 1 ∩ U 2 ) → φ 2 ( U 1 ∩ U 2 ) ( x 1 , … , x n ) ↦ ( 1 x 1 , x 2 x 1 , … , x n x 1 ) , \varphi_2(\varphi_1)^{-1}:\varphi_1(U_1\cap U_2)\to \varphi_2(U_1\cap U_2)\\ (x_1,\dots,x_n)\mapsto (\frac{1}{x_1},\frac{x_2}{x_1},\dots,\frac{x_{n}}{x_1}), φ2(φ1)1:φ1(U1U2)φ2(U1U2)(x1,,xn)(x11,x1x2,,x1xn),
可知 φ 2 ( φ 1 ) − 1 \varphi_2(\varphi_1)^{-1} φ2(φ1)1 C ∞ C^\infty C映射,因此坐标图 ( U 1 , φ 1 ) (U_1,\varphi_1) (U1,φ1) ( U 2 , φ 2 ) (U_2,\varphi_2) (U2,φ2) C ∞ C^\infty C相容的。同理可得坐标图册 { ( U i , φ i ) ∣ i = 1 , 2 , … , n + 1 } \{(U_i,\varphi_i)|i=1,2,\dots,n+1\} {(Ui,φi)i=1,2,,n+1} R P n \mathrm{R}\mathrm{P}^n RPn C ∞ C^\infty C相容坐标图册,因此 R P n \mathrm{R}\mathrm{P}^n RPn n n n C ∞ C^\infty C微分流形。

例3: 复射影空间 C P n \mathrm{C}\mathrm{P}^n CPn 2 n 2n 2n C ∞ C^\infty C微分流形。

证明: 实射影空间 C P n \mathrm{C}\mathrm{P}^n CPn是Hausdorff空间。令 X = C n + 1 − 0 X=\mathrm{C}^{n+1}-{0} X=Cn+10,在 X X X上定义等价关系 ∼ \sim :对 ∀ x , y ∈ X \forall x,y\in X x,yX x ∼ y x\sim y xy当且仅当存在 t ∈ C t\in\mathrm{C} tC t > 0 t>0 t>0使得 y = t x y=tx y=tx,则 C P n \mathrm{C}\mathrm{P}^n CPn即为 X / ∼ X/\sim X/.令
U i = { [ ( x 1 , … , x n + 1 ) ] ∣ ( x 1 , … , x n + 1 ) ∈ X ∣ x i ≠ 0 } ,   i = 1 , 2 , … , n + 1 U_i=\{[(x_1,\dots,x_{n+1})]|(x_1,\dots,x_{n+1})\in X|x_i\ne 0\},\ i=1,2,\dots,n+1 Ui={[(x1,,xn+1)](x1,,xn+1)Xxi=0}, i=1,2,,n+1
其中 [ x ] [x] [x]表示 x ∈ X x\in X xX关于等价关系 ∼ \sim 的等价类。令 ( x 1 , … , x n + 1 ) ∈ X (x_1,\dots,x_{n+1})\in X (x1,,xn+1)X x i ≠ 0 x_i\ne 0 xi=0,对 ∀ ( y 1 , … , y n + 1 ) ∈ X \forall (y_1,\dots,y_{n+1})\in X (y1,,yn+1)X,可知
( x 1 x i , … , x n + 1 x i ) = ( y 1 y i , … , y n + 1 y i )    ⟺    ( x 1 , … , x n + 1 ) ∼ ( y 1 , … , y n + 1 ) (\frac{x_1}{x_i},\dots,\frac{x_{n+1}}{x_i})=(\frac{y_1}{y_i},\dots,\frac{y_{n+1}}{y_i})\iff(x_1,\dots,x_{n+1})\sim(y_1,\dots,y_{n+1}) (xix1,,xixn+1)=(yiy1,,yiyn+1)(x1,,xn+1)(y1,,yn+1)
因此,下面的映射 φ i \varphi_i φi是良定义的单射
φ i : U i → R n ,   [ ( x 1 , … , x n + 1 ) ] ↦ ( x 1 x i , … , x i − 1 x i , x i + 1 x i , … , x n + 1 x i ) ,   i = 1 , 2 , … , n + 1. \varphi_i:U_i\to \mathrm{R}^n,\ [(x_1,\dots,x_{n+1})]\mapsto (\frac{x_1}{x_i},\dots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\dots,\frac{x_{n+1}}{x_i}),\ i=1,2,\dots,n+1. φi:UiRn, [(x1,,xn+1)](xix1,,xixi1,xixi+1,,xixn+1), i=1,2,,n+1.
因此 φ i \varphi_i φi存在逆映射
φ i − 1 : φ i ( U i ) → U i ,   ( x 1 , … , x n ) ↦ [ ( x 1 , … , x i − 1 , 1 , x i + 1 , … , x n + 1 ) ] . \varphi_i^{-1}:\varphi_i(U_i)\to U_i,\ (x_1,\dots,x_n)\mapsto [(x_1,\dots,x_{i-1},1,x_{i+1},\dots,x_{n+1})]. φi1:φi(Ui)Ui, (x1,,xn)[(x1,,xi1,1,xi+1,,xn+1)].
π : C → R 2 ,   x + y i ↦ ( x , y ) \pi:\mathrm{C}\to \mathrm{R}^2,\ x+y\mathrm{i}\mapsto (x,y) π:CR2, x+yi(x,y),显然 π \pi π C ∞ C^\infty C同胚,因此 π φ i \pi\varphi_i πφi U i U_i Ui π φ i ( U i ) ∈ R 2 n \pi\varphi_i(U_i)\in \mathrm{R}^{2n} πφi(Ui)R2n C ∞ C^\infty C微分同胚映射,考虑映射
π φ 2 ( π φ 1 ) − 1 : π φ 1 ( U 1 ∩ U 2 ) → π φ 2 ( U 1 ∩ U 2 ) ( π ( x 1 ) , … , π ( x n ) ) ↦ ( π ( 1 x 1 ) , π ( x 2 x 1 ) , … , π ( x n x 1 ) ) , \pi\varphi_2(\pi\varphi_1)^{-1}:\pi\varphi_1(U_1\cap U_2)\to \pi\varphi_2(U_1\cap U_2)\\ (\pi(x_1),\dots,\pi(x_n))\mapsto (\pi(\frac{1}{x_1}),\pi(\frac{x_2}{x_1}),\dots,\pi(\frac{x_{n}}{x_1})), πφ2(πφ1)1:πφ1(U1U2)πφ2(U1U2)(π(x1),,π(xn))(π(x11),π(x1x2),,π(x1xn)),
可知 π φ 2 ( π φ 1 ) − 1 \pi\varphi_2(\pi\varphi_1)^{-1} πφ2(πφ1)1 C ∞ C^\infty C映射,因此坐标图 ( U 1 , π φ 1 ) (U_1,\pi\varphi_1) (U1,πφ1) ( U 2 , π φ 2 ) (U_2,\pi\varphi_2) (U2,πφ2) C ∞ C^\infty C相容的。同理可得坐标图册 { ( U i , π φ i ) ∣ i = 1 , 2 , … , n + 1 } \{(U_i,\pi\varphi_i)|i=1,2,\dots,n+1\} {(Ui,πφi)i=1,2,,n+1} C P n \mathrm{C}\mathrm{P}^n CPn C ∞ C^\infty C相容坐标图册,因此 C P n \mathrm{C}\mathrm{P}^n CPn 2 n 2n 2n C ∞ C^\infty C微分流形。

积流形: M M M N N N分别是 m m m维和 n n n C k C^k Ck微分流形,它们的微分结构分别为 { ( U i , φ i ) ∣ i ∈ I } \{(U_i,\varphi_i)|i\in I\} {(Ui,φi)iI} { ( V j , ϕ j ) ∣ j ∈ J } \{(V_j,\phi_j)|j\in J\} {(Vj,ϕj)jJ} I I I J J J分别是相应的指标集。显然, { ( U i × V j ) ∣ i ∈ I , j ∈ J } \{(U_i\times V_j)|i\in I,j\in J\} {(Ui×Vj)iI,jJ}是拓扑空间 M × N M\times N M×N的开覆盖。定义映射
φ i × ϕ j : U i × V j → R m × R n = R m + n ( p , q ) ↦ ( φ i ( p ) , ϕ j ( q ) ) ,   ( p , q ) ∈ U i × V j ⊂ M × N , \varphi_i\times \phi_j:U_i\times V_j\to\mathrm{R}^m\times\mathrm{R}^n=\mathrm{R}^{m+n}\\ (p,q)\mapsto(\varphi_i(p),\phi_j(q)),\ (p,q)\in U_i\times V_j\subset M\times N, φi×ϕj:Ui×VjRm×Rn=Rm+n(p,q)(φi(p),ϕj(q)), (p,q)Ui×VjM×N,
则容易证明 { ( U i × V j , φ i × ϕ j ) ∣ i ∈ I , j ∈ J } \{(U_i\times V_j,\varphi_i\times\phi_j)|i\in I,j\in J\} {(Ui×Vj,φi×ϕj)iI,jJ} M × N M\times N M×N C k C^k Ck相容坐标图册,因此 M × N M\times N M×N m + n m+n m+n C k C^k Ck微分流形。此时,称 M × N M\times N M×N M M M N N N的积流形。

例4: n n n维环面 T n = S 1 × … , × S 1 \mathrm{T}^n=\mathrm{S}^1\times\dots,\times\mathrm{S}^1 Tn=S1×,×S1,是 n n n C ∞ C^\infty C微分流形。

证明: T n = S 1 × … , × S 1 \mathrm{T}^n=\mathrm{S}^1\times\dots,\times\mathrm{S}^1 Tn=S1×,×S1 n n n个圆环 S 1 \mathrm{S}^1 S1的积空间,而 S 1 \mathrm{S}^1 S1 1 1 C ∞ C^\infty C微分流形。因此,根据积流形的定义,容易验证 T n \mathrm{T}^n Tn n n n C ∞ C^\infty C微分流形。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值