python数据分析
文章平均质量分 61
George&Rita
星光不负赶路人!
展开
-
Matplotlib绘图标签出现中文乱码的解决方案
网上试了很多种方案,都没有什么效果,后来终于发现一种方法可以完美解决。只需要在代码开头加上这三句代码即可完美解决。希望同样可以帮助到大家!import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=False ...原创 2019-08-24 20:31:37 · 658 阅读 · 0 评论 -
利用Pandas的DataFrame,Series进行绘图
文章目录(1)、Pandas绘图常用的属性(2)、导入库(3)、绘制线图(4)、绘制柱形图(4)、直方图和密度图(5)、散点图关于Python数据分析在数学建模中的更多相关应用:Python数据分析在数学建模中的应用汇总(持续更新中!)(1)、Pandas绘图常用的属性左上角为处理Series的,右下角为处理DataFrame的(2)、导入库from pandas import Ser...原创 2019-08-24 20:24:47 · 1753 阅读 · 0 评论 -
Python实现TOPSIS分析法(优劣解距离法)
文章目录(1)、题目(2)、读取Excel表中的数据(3)、将不同的指标转换为极大型指标(4)、正向化矩阵标准化(5)、计算得分并归一化(6)、主函数(7)、完整代码部分(8)、计算结果(1)、题目题目:评价下表中20条河流的水质情况。注:含氧量越高越好(极大型指标),PH值越接近7越好(中间型指标),细菌总数越少越好(极小型指标),植物性营养物量介于10~20之间最佳,超过20或低于10...原创 2019-07-28 10:05:53 · 22797 阅读 · 14 评论 -
Python实现迪杰斯特拉算法和贝尔曼福特算法求解最短路径
(一)、题目本题采用带权无向图作为例子。要求实现:绘制带权无向图获得从源结点到目的结点的最短路径所有结点两两之间的最短路径实现最短路径高亮(二)、导库最短路径问题主要使用的库是:networkx——内置常用的图与复杂网络分析算法matplotlib——使用matplotlib库进行绘图import networkx as nx #内置常用的图与复杂网络分析算法...原创 2019-08-01 13:59:30 · 2140 阅读 · 0 评论 -
Pandas操作CSV文件的读写
文章目录(1)、导库(2)、读取csv文件的两种方式(2)、根据需要条件读取csv文件(3)、利用正则表达式读取不同含有不同分隔符的文件(4)、根据需要选择需要读的行(5)、处理缺失值(6)、逐行读取文件(7)、将dataframe数据写入csv文件(8)、将csv文件读取位Series(1)、导库import pandas as pdfrom pandas import Series(...原创 2019-07-22 16:36:40 · 1372 阅读 · 1 评论 -
Series和DataFrame简单入门
文章目录(1)、导入库(2)、Series简单创建与使用(3)、根据字典创建Series(4)、列表与字典进行匹配(5)、两个Serires相加(6)、修改索引的名字(7)、dataframe的简单应用(8)、获取DataFrame其中的一列(相当于Series)(9)、修改DataFrame中的值(10)、输出DataFrame整体值(11)、DataFrame的构造函数(1)、导入库fro...原创 2019-07-22 15:33:16 · 1158 阅读 · 0 评论 -
层次分析法(AHP)——算数平均值法、几何平均值法、特征值法(Python实现,超详细注释)
(1)、算数平均值法求权重步骤:判断矩阵按列求和,得到新矩阵a_axis_0_sum把判断矩阵中的每一个数都除以列和,得到新的矩阵b计算新矩阵b行和,得到新矩阵b_axis_1_sum将b_axis_1_sum每一个值除以总和,获得权重W求解最大特征值计算C_R判断矩阵的一致性,如果检验通过就输出结果# -*- coding: utf-8 -*-"""Created on ...原创 2019-07-25 23:06:06 · 20004 阅读 · 5 评论 -
Numpy常用方法使用大全(超详细)
1、导入Numpyimport numpy as np2、向量相加#向量相加-numpydef numpysum(n): a = np.arange(n)**2 b = np.arange(n)**3 c = a + b return cprint(numpysum(20))3、Numpy数组#numpy数组a = np.arange(5)pr...原创 2019-07-21 23:08:50 · 6314 阅读 · 1 评论 -
Python数据分析在数学建模中的应用汇总(持续更新中!)
(一)、Numpy库的使用1、Numpy常用方法使用大全(超详细)(二)、Pandas库的简单使用1、Series和DataFrame简单入门2、Pandas操作CSV文件的读写3、Pandas处理DataFrame,Series进行作图(三)、Matplotlib库进行绘图1、Matplotlib绘图之属性设置2、Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图(...原创 2019-07-29 22:26:33 · 7046 阅读 · 2 评论 -
Python实现统计描述以及计算皮尔逊相关系数
Python实现统计描述以及计算皮尔逊相关系数原创 2019-07-29 19:17:39 · 3620 阅读 · 6 评论 -
Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图
(1)、导入库import numpy as npimport matplotlib.pyplot as plt(2)、误差条形图#误差条形图x = np.arange(0,10,1) #生成一个数组y = np.log(x) #根据x计算y值xe = 0.1 * np.abs(np.random.randn(len(y))) #通过标准正态分布得出误差值#将误差值赋值...原创 2019-07-24 16:35:34 · 1650 阅读 · 0 评论 -
Python实现线性函数的拟合算法
(一)、读取数据#从excel文件中读取数据def read(file): wb = xlrd.open_workbook(filename=file)#打开文件 sheet = wb.sheet_by_index(0)#通过索引获取表格 rows = sheet.nrows # 获取行数 all_content = [] #存放读取的数据 ...原创 2019-07-29 13:28:27 · 7821 阅读 · 4 评论 -
Python实现线性插值和三次样条插值
(1)、函数y = sin(x)(2)、数据准备#数据准备X=np.arange(-np.pi,np.pi,1) #定义样本点X,从-pi到pi每次间隔1Y= np.sin(X)#定义样本点Y,形成sin函数new_x=np.arange(-np.pi,np.pi,0.1) #定义差值点(3)、样条插值#进行样条差值import scipy.interpolate as spi...原创 2019-07-29 11:11:20 · 16768 阅读 · 4 评论 -
Matplotlib绘图之属性设置
(1)、导入库import matplotlib.pyplot as pltimport numpy(2)、figure对象和subplot简单运用#figure对象fig = plt.figure() #figure是图象对象ax1 = fig.add_subplot(2,2,1) #创建一个2*2的子图,放在第一个位置ax2 = fig.add_subplot...原创 2019-08-21 17:14:38 · 5362 阅读 · 4 评论