小样本学习
文章平均质量分 51
TBYourHero
to be your hero
展开
-
Transductive和Inductive的区别
链接:https://www.jianshu.com/p/db6bff0623b1。商业转载请联系作者获得授权,非商业转载请注明出处。转载 2022-09-27 15:09:14 · 1775 阅读 · 1 评论 -
批量将PPM格式图片转化为JPG格式
代码】批量将PPM格式图片转化为JPG格式。转载 2022-07-25 13:07:18 · 767 阅读 · 0 评论 -
META-DATASET 数据集类别划分(ILSVRS2012)
根据数据集介绍,以及数据集划分jsonmeta_dataset数据集划分为trian/val/test比例为712/158/130;以下为详细的VI版本,ILSVRC2012既IMAGENET-1K的数据集划分入下:TRAIN:VAL:TEST:原创 2022-07-08 22:25:40 · 799 阅读 · 0 评论 -
episodic和batch的定义
episodic和batch的定义原创 2022-07-04 16:28:42 · 297 阅读 · 0 评论 -
Matching Feature Sets for Few-Shot Image Classification 论文阅读
论文阅读Matching Feature Sets for Few-Shot Image Classification设计思路本文提出了一种提取和匹配特征向量集的方法,用于少镜头图像分类。本文指出,大多小样本学习方法匹配的都是单一特征向量,本文对于特征提取器的不用block都输出一个特征,在度量阶段:度量的是支持集特征集合与查询集特征集合之间的距离.对于每个block的输出特征,本文引入了注意力机制,展示了不同block对不同目标的识别注意力区域。注意力结构如下:效果图如下。可以看到不同原创 2022-05-16 11:08:37 · 1309 阅读 · 0 评论 -
pytorch-DataLoader(数据迭代器)详解
(152条消息) pytorch-DataLoader(数据迭代器)_学渣的博客-CSDN博客_pytorch 数据迭代器写的特别好!!转载 2022-02-18 10:04:26 · 1942 阅读 · 1 评论 -
改进三元组损失
三元组损失tripletloss改进三元组损失原创 2021-04-27 15:52:31 · 1785 阅读 · 0 评论 -
小样本学习调研2021.3 多模态小样本学习/大规模小样本学习
https://blog.csdn.net/qq_21157073/article/details/110953580Large-Scale Few-Shot Learning via Multi-Modal Knowledge Discovery(解决大类别下的小样本学习)关键点:视觉特征分块;语义弱监督的引入在视觉空间中,将图片分为三种,原始图片+前景图片+背景图片。其中前景背景是通过显著性检测得到。分别正对原始图片,前景图片,背景图片输入到对应网络中提取特征,将三个得到的特征拼接为.转载 2021-03-12 09:19:44 · 1192 阅读 · 0 评论 -
Graph Few-shot Learning via Knowledge Transfer
一:Graph Few-shot Learning via Knowledge Transfer - Yuan Z的文章 - 知乎 https://zhuanlan.zhihu.com/p/163325483最近看到了arxiv上的一篇论文Graph Few-shot Learning via Knowledge Transfer,今天准备简单的总结一下。 这一篇论文本质上就是Prototypical Network的一个改进。他的改进主要集中在以下三个方面:在构造每个类的原型向量的时候,引入了P.原创 2021-03-11 21:39:53 · 483 阅读 · 0 评论 -
Few-Shot Learning With Graph Neural Networks
https://zhuanlan.zhihu.com/p/67745489在 Few-Shot Learning 中,每个类别的训练样本数据较少,如果直接训练一个多分类模型,会由于每个类别的样本较少而无法训练充分。而 GNN 的一个优点在于可以通过节点之间的连接来做信息扩散,如果把每个样本视作图中一个节点,节点之间的边是它们的某种距离度量,那么,就可以把已有label的样本的 label 信息根据节点之间相似性的强弱,有选择的扩散到与之最相似的,需要预测的样本上。这样,新样本在预测的时候,可以利用到各个原创 2021-03-11 21:06:29 · 427 阅读 · 1 评论 -
对小样本学习的思考
作者:ICOZ链接:https://www.zhihu.com/question/439865186/answer/1747593000来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。如果你只是focus在小样本分类的那几个benchmark上,那的确看起来很局限。事实上小样本学习的应用可以是很广泛的, 其中的研究思路也可以对其他领域产生启发。这两个方面展开说可以写很多。随便举几个例子,很多相关的问题都可以看做小样本学习,比如图像检索,人脸识别验证,行人重识别.转载 2021-03-11 19:53:21 · 804 阅读 · 0 评论 -
图小样本学习方法调研
基于图网络的few-shot detection论文总结(上) - Kristina王的文章 - 知乎 https://zhuanlan.zhihu.com/p/217431724这几天读了一些关于用图网络对少样本进行目标检测的论文,发现今年顶会接收的关于此方向的文章有点“换汤不换药”的味道。1、《Knowledge Graph Transfer Network for Few-Shot Recognition》AAAI 2020是一篇关于知识图谱迁移网络小样本识别的论文。Abstract转载 2021-03-11 17:16:21 · 1181 阅读 · 0 评论 -
拉普拉斯矩阵与拉普拉斯算子的关系
https://zhuanlan.zhihu.com/p/85287578转载 2021-01-04 17:14:07 · 547 阅读 · 0 评论 -
正则化 || 流行正则化方法
Manifold regularization: A geometric framework for learning from labeled and unlabeled examplesBetween-class learning for image classification-CVPR2018Manifold mixup: Better representations by interpolating hidden states-ICML2019mixup: Beyond empir..原创 2021-01-04 16:15:56 · 915 阅读 · 0 评论 -
Few-Shot 小样本学习 论文检索
ReferencesDiscriminative k-shot learning using probabilistic models. arXiv preprintarXiv:1706.00326 (2017) A closer look at few-shot classification. In: ICLR (2019) 【已读】 Diversity with cooperation: Ensemble methods for few-shot classification. In: ICCV原创 2021-01-04 16:15:18 · 969 阅读 · 0 评论 -
转导学习 transductive learning
转导推理区别于归纳推理(Inductive Inference)从特殊到一般,再从一般到特殊的学习方式,转导推理(Tranductive Inference)是一种从特殊到特殊的统计学习(或分类)方法。在预测样本的类别时,转导推理试图通过局部的标注训练样本进行判断,这与归纳推理先从训练样本中归纳得到一般模型有着很大差异。特别是当训练样本的数量不足以归纳得到全局一般模型时,转导推理能够利用未标注样本补充标注样本的不足。然而转导推理还有很多问题亟待解决,例如KNN每次预测都要遍历所有测试样本,TSVM的精确原创 2021-01-04 15:18:51 · 8979 阅读 · 1 评论 -
Embedding Propagation: Smoother Manifold for Few-Shot Classification ECCV 2020
论文题目 Embedding Propagation: Smoother Manifold for Few-Shot Classification ECCV 20201分钟思维导图(来源)Abstract目前小样本学习(Few-shot Learning,FSL)是非常具有挑战性的,是由于训练集和测试集的分布可能存在不同,产生的分布偏移(distribution shift)会导致较差的泛化性。**流形平滑(Manifold smoothing)**通过扩展决策边界和减少类别表示的噪音(ex转载 2020-12-31 16:53:33 · 1174 阅读 · 1 评论 -
Few-shot Learning via Saliency-guided Hallucination of Samples||阅读
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出了一种基于数据增强的小样本学习算法。选择Relation Network作为Baseline,在此基础上,利用显著性目标检测算法,将图像分割成前景与背景,再将不同图片的前景和背景进行拼合,组成更多的合成图像,以此实现数据集的扩充。本文的想法乍看起来很简单,4张图片分成前景和背景共8张图片,然后两两组合就可以得到16张合成图片,但在实现过程中仍有许多细节问题需要考虑,那看一下作者是如何实现其想法的吧。 如上图所示,整个网络分成三转载 2020-11-19 15:49:51 · 429 阅读 · 0 评论 -
小样本研究论文集 数据集 精度
Few-Shot Classification Leaderboard原创 2020-10-29 16:37:26 · 488 阅读 · 1 评论 -
自监督:对比学习contrastive learning
对比自监督学习英文原文对比自监督学习导读利用数据本身为算法提供监督。对比自监督学习技术是一种很有前途的方法,它通过学习对使两种事物相似或不同的东西进行编码来构建表示。自监督方法将取代深度学习中占主导地位的直接监督范式的预言已经存在了相当一段时间。Alyosha Efros打了一个著名的赌,赌在2015年秋季之前,一种无监督的方法将会在检测Pascal VOC方面胜过有监督的R-CNN。但四年之后,他的预言现在已经实现了。目前,自监督方法(MoCo, He et al., 2019)在Pasc转载 2020-07-30 15:59:15 · 17421 阅读 · 2 评论 -
NeurIPS 2019 少样本学习研究亮点全解析
NeurIPS 2019 少样本学习研究亮点全解析少样本学习(Few-Shot Learning)是近两年来非常有研究潜力的一个子方向,由于深度学习在各学科交叉研究与商业场景都有比较普遍的应用,然而训练出高精度模型的情况大部分来源于充足的训练数据,这一条件在很多实际应用场景中是比较难以满足的,同时刻意收集大量数据并且进行人为标记也对应较大的付出。针对此类痛点,少样本学习被提出并进行了多个应...转载 2020-03-14 09:05:26 · 625 阅读 · 0 评论 -
当小样本遇上机器学习 fewshot learning
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019原文引言深度学习(deeplearning)已经广泛应用于各个领域,解决各类问题,例如在图像分类问题下,如图1,区分这10类...转载 2019-10-23 09:37:13 · 1524 阅读 · 0 评论 -
omniglot数据集下载
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019直接下载github整个项目(94M),解压取python版本,新建一个data,将所有压缩包放进data即可。数据集简介Om...转载 2019-06-13 21:21:47 · 12593 阅读 · 1 评论 -
Zero-Shot Learning via Joint Latent Similarity Embedding||论文阅读
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019Zero-Shot Learning via Joint Latent Similarity Embedding...原创 2019-06-06 18:46:13 · 359 阅读 · 0 评论 -
Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning||论文阅读
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019转:https://zhuanlan.zhihu.com/p/29215437论文《Predicting Visual Exemplars of Uns...原创 2019-06-06 17:31:54 · 589 阅读 · 0 评论 -
ICCV 2017 论文解读集锦
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019之前我们整理过视觉顶会CVPR2017的论文解读文章和NIPS 2017 论文解读集锦,ICCV2017已经结束一段时间了,为了能够让大家更深刻了解ICC...原创 2019-06-06 17:23:43 · 1604 阅读 · 0 评论 -
零次学习(Zero-Shot Learning)入门
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019参考:https://blog.csdn.net/tianguiyuyu/article/details/81948700...原创 2019-06-06 15:19:34 · 350 阅读 · 0 评论 -
基于元学习处理小样本问题
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019参考:当小样本遇上机器学习 fewshot learning基于元学习处理小样本问题元学习通过大量的数据,现在的AI系统能从0开始学习一个复杂的...原创 2019-05-07 16:11:42 · 6661 阅读 · 2 评论 -
Zero-shot / One-shot / Few-shot Learning
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019转载自:http://www.cnblogs.com/jngwl/articles/10221819.html#top1. Introduction...转载 2019-04-21 21:49:28 · 1018 阅读 · 0 评论 -
Optimization as a model for few-shot learning||论文阅读
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019介绍:对Few-shot learning中的优化进行建模本文通过将SGD更新规则解释为具有可训练参数的门控递归模型,描述了一种新的元学习...原创 2019-04-15 21:17:10 · 3865 阅读 · 0 评论 -
小样本学习综述||阿里巴巴
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019https://baijiahao.baidu.com/s?id=1629626559555746572&wfr=spider&...原创 2019-06-04 21:14:36 · 972 阅读 · 0 评论 -
Learning to Compare: Relation Network for Few-Shot Learning||论文阅读
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019https://blog.csdn.net/heavenpeien/article/details/80045611...原创 2019-06-04 21:42:08 · 189 阅读 · 0 评论 -
小样本学习是什么
https://blog.csdn.net/xhw205/article/details/79491649个人博客:https://xhw205.github.io/小样本学习背景深度学习背景下,每个类至少需要上千张训练样本才能使CNN在已知类别上性能饱和。此外,神经网络generalization ability 薄弱,当 novel class 来临时, 模型很难通过少量的标...转载 2019-07-18 14:49:08 · 876 阅读 · 0 评论 -
Hybrid attention-based prototypical networks for noisy few-shot relation
Gao [9] 等人提出文本与图像的一大区别在于其多样性和噪音更大,因此提出一种基于混合注意力的原型网络结构,如图 9 所示,首先使用 instance-level 的 attention 从支撑集中选出和 query 更为贴近的实例,同时降低噪声实例所带来的影响。然后 feature-level 的实例能够衡量特征空间中的哪些维度对分类更为重要,从而为每种不同的关系都生成相适应的距离度量函数...原创 2019-09-23 22:28:48 · 2307 阅读 · 3 评论 -
[cvpr]Edge-Labeling Graph Neural Network for Few-shot Learning 笔记
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019https://blog.csdn.net/u010510549/article/details/92085421...原创 2019-09-23 21:56:34 · 428 阅读 · 0 评论 -
度量方法:非参数模型KNN最近邻算法
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019分类 :kNN(k nearest neighbour)最近邻算法(Python)kNN算法概述kNN算法是比较好理解,也比较容易编写的分类算法。...转载 2019-09-08 10:37:49 · 2475 阅读 · 0 评论 -
Low-Shot Learning with Imprinted Weights||论文阅读
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019《Low-Shot Learning with Imprinted Weights》论文精读keras实现《Low-Shot Learnin...转载 2019-09-06 15:01:04 · 1697 阅读 · 0 评论 -
什么是Few-Shot Learning
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-20191.已有大量类似先前任务,且这些任务有大量数据集可用于训练2.目标是给定一系列新任务,且这些任务只具有少量训练数据集,如何能准确预测这些任务...原创 2019-09-04 15:32:53 · 1267 阅读 · 0 评论 -
小样本学习年度进展|VALSE2018
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019CSDN【领域报告】小样本学习年度进展|VALSE2018总结的很好知乎【领域报告】小样本学习年度进展|VALSE2018...原创 2019-07-22 15:26:22 · 696 阅读 · 0 评论 -
CVPR2019的few-shot的文章
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019作者:sisiyou链接:https://zhuanlan.zhihu.com/p/67402889来源:知乎本文主要总结了CVPR2019的f...转载 2019-07-25 15:37:45 · 1970 阅读 · 0 评论