LeetCode 打卡 Day 49 —— 买卖股票的最佳时机

本文探讨了一种优化算法,用于解决在给定数组表示的股票价格中找到最大利润的交易策略。通过使用动态规划,避免了暴力求解的复杂性,实现了更高效的解决方案。代码示例展示了如何在遍历过程中维护最小价格,从而计算每次交易的可能最大利润。
摘要由CSDN通过智能技术生成

1、题目

  

2、题解

题目还是较为简单的,暴力方法很容易想到,使用一个二重遍历,固定数组中每一个数字然后向后进行遍历,保存差的最大值。但是总感觉有能够优于暴力解法的方法,即在遍历的过程中保存已遍历过的数字中的最小值,用当前值减去最小值即当前值能取得的最大利润。实现代码如下

func maxProfit(prices []int) int {
    profit:=0
    minP:=math.MaxInt32
    getMin:=func(a, b int) int {
        if a>b {
            return b
        }else { return a }
    }
    getMax:=func(a, b int) int {
        if a<=b {
            return b
        }else { return a }
    }

    for i:=0; i<len(prices); i++ {
        minP=getMin(minP, prices[i])
        profit=getMax(profit, prices[i]-minP)
    }
    return profit
}

提交结果如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值