动态规划:509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯

509. 斐波那契数

很简单的动规入门题,但简单题使用来掌握方法论的,还是要有动规五部曲来分析

在这里插入图片描述

  • 原始的dp
class Solution {
    public int fib(int n) {
        if(n <= 1) return n;
        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2; i <= n; i++){
            dp[i] = dp[i - 1] + dp[i - 2];

        }
        return dp[n];
    }
}
  • 当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列。
class Solution {
    public int fib(int n) {
        if(n <= 1) return n;
        int[] dp = new int[2];
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2; i <= n; i++){
           int sum = dp[0] + dp[1];
           dp[0] = dp[1];
           dp[1] = sum;
        }
        return dp[1];
    }
}

70. 爬楼梯

在这里插入图片描述
在这里插入图片描述

把上面这个递推公式弄明白这道题就明白了

1阶 1步 1种方法

2阶 1 1步;一步两个楼梯;2种方法

明白了3阶就全懂了

3阶 :就是在2阶的基础上在迈1步就到了相当于有两种,也可以在1阶的基础上连续1步,总共3种(1阶 + 2阶)

4阶:就是在2阶或3阶的基础上迈,2阶情况就是只能再迈两步,3阶情况是只能迈1步,最后就是总情况是5种(2阶 + 3阶)

当时自己思考有这情况,就是开始2阶,之后的二阶不也有两种情况,相当于光二阶就有4种情况吗,不是的,因为这样看会多出一种情况就是记录3阶时1111会出现两次;

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 1];
        if(n <= 2) return n;
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++){
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}

这道题开始写的时候当n=1时出现了问题,因为没有写if判断,5到10行都是针对n=3这种情况

746. 使用最小花费爬楼梯

在这里插入图片描述
在这里插入图片描述

首先需要明确的是站在0位置也就是10楼梯,不消耗体力值,只有向上爬才需要,楼顶是下标为3的位置(看示例1能看出来)

dp[i] 表示到达第i台阶所花费的最少体力为dp[i]

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int[] dp = new int[cost.length + 1];
        dp[0] = 0;
        dp[1] = 0;
        for(int i = 2; i <= dp.length - 1; i++){
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[dp.length - 1];
    }
}
  • 官方
// 方式一:第一步不支付费用
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int len = cost.length;
        int[] dp = new int[len + 1];

        // 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
        dp[0] = 0;
        dp[1] = 0;

        // 计算到达每一层台阶的最小费用
        for (int i = 2; i <= len; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }

        return dp[len];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值