剑指offer-孩子们的游戏(圆圈中最后剩下的数)

六一儿童节期间,牛客网资深元老HF设计了一个游戏,孩子们围成一圈,从0号孩子开始按m计数报数,数到m-1的孩子出列并领取礼物,直到只剩最后一个孩子。此问题转化为求解约瑟夫环算法,通过递推公式F(N)=(F(N-1)+m)%n找出最后的胜出者。当所有孩子都领完礼物,返回-1。
摘要由CSDN通过智能技术生成

题目

每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数…这样下去…直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!_)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)

如果没有小朋友,请返回-1

思路

显然这是一道经典的约瑟夫环算法题,将编号为0~(N–1)这N个人进行圆形排列,按顺时针从0开始报数,报到M–1的人退出圆形队列,剩下的人继续从0开始报数,不断重复。求最后出列者最初在圆形队列中的编号。
可用数学归纳求出递推公式F(N)=(F(N-1)+m)%n
公式归纳推理过程

实现

/**
约瑟夫环,递推公式 F(N)=(F(N-1)+m)%n
**/
public class Solution {
    public int LastRemaining_Solution(int n, int m) {
        if(n==0) return -1;//如果没有小朋友,请返回-1
        if(n==1) return 0;
        int last=LastRemaining_Solution(n-1,m);//上一个
        return (last+m)%n;
        
        
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值