推荐系统之---UGC标签推荐方式

本文探讨了UGC标签系统的构建及在个性化推荐中的应用。详细介绍了标签的多种类型,如物品属性、用户观点等,并提出了一种基于用户标签行为的推荐算法。同时,讨论了算法的优缺点及改进策略,包括解决热门问题、数据稀疏性和标签清理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.说明

UGC标签系统是很多网站、平台的必要组成成分,下面简单介绍如何使用UGC的方式进行推荐。

2.标签的种类

  • 表明物品是什么:比如一本书,就会有“书”的标签。
  • 表明物品的种类:比如《数学之美》,就会有“数学”的标签。
  • 表明谁拥有的物品:比如本篇博客的所属。
  • 表达用户的观点:比如给某个商品、电影打上“搞笑”的标签。
  • 用户相关的标签:比如网易云里一首歌《Lemon》,标注为“我喜欢”。
  • 用户的任务:比如在贴吧或者知乎会经常遇到。“Mark”这样的标签。
  • 类型:主要表示物品所属的类别,比如牙刷属于“日用品”。
  • 时间:商品的上线时间。
  • 人物:商品的代言,或者电影的演员、导演等。
  • 地点:商品的产地,电影的拍摄地等。
  • 语言:比如电影的语言。
  • 奖项:电影获过什么大奖。
  • 其他。

3.标签推荐

【数据】

  • 一个用户标签行为的数据集一般有一个三元组的集合表示,即为(u,i,b)。
  • 其中,u表示用户,i表示为物品,b表示为用户u对物品i的标签。

【算法】

  • 有了用户标签行为数据,就可以设计一个算法来进行个性化推荐。过程如下:
    • 统计每个用户最常用的标签。
    • 对每个标签,统计被打过这个标签次数最多的物品。
    • 对一个用户,首先找到他常用的标签,然后找到具有这些标签的最热门物品推荐给这个用户。
  • 对于上面的算法,用户u对物品i的兴趣公式如下:

p ( u , i ) = ∑ b ( n u , b ∗ n b , i ) p(u,i) = \sum_b({n_{u,b}*n_{b,i}})

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值