机器学习(3):信息检索指标-查准率(Precision),查全率(Recall),平均准确率(mAP)

 一.查准率和查全率

查准率=准确率(Precision)=检索到的该类图像/检索到的所有图像数

 

查全率=召回率(Recall)=检索到的该类图像/数据库中所有的该类图像

 

二.MAP(Mean Average Precision)平均精度均值

MAP可以由它的三个部分来理解:P,AP,MAP

P(Precision)精度,正确率。在信息检索领域用的比较多,和正确率一块出现的是召回率Recall。对于一个查询,返回了一系列的文档,正确率指的是返回的结果中相关的文档占的比例,而召回率则是返回结果中相关文档占所有相关文档的比例。相关概念如上。

MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。 MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。

对一个搜索引擎或推荐系统而言返回的结果必然是有序的,而且越相关的文档排的越靠前越好,于是有了AP的概念。对一个有序的列表,计算AP的时候要先求出每个位置上的precision,然后对所有的位置的precision再做个average。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值