1 介绍一下
MNIST数据集 (Mixed National Institute of Standards and Technology database) 是美国国家标准与技术研究院收集整理的大型手写数字数据库,包含 6万 个示例的训练集以及 1万 个示例的测试集。
收集时间:1998年
MNIST数字文字识别数据集数据量不太多,而且是单色的图像,比较简单,很适合深度学习的初学者用来练习建立模型、训练、预测。
2 环境准备
在此之前,我已经装好了Anaconda,并且创建了两个虚拟环境,
其实,之所以用虚拟环境,是为了解决包之间兼容性问题。
下面激活虚拟环境
conda activate tensorFlowfu
启动 jupyter notebook
jupyter notebook
3 导入数据
MNIST数据集里的每一个图片,其实就是28 * 28的矩阵,一共有六万个矩阵,构成了一个60000 * 28 * 28的数组。
每个矩阵都对应一个标签,也就是一个数值,测试集的标签,是一个 1 * 60000 的数组。
4 数据预处理
5 建立模型
大家一定要注意: 输入层—神经网络的第一层。 它接收输入信号(值)并将其传递至下一层,但不对输入信号(值)执行任何运算。 它没有自己的权重值和偏置值。
6 训练模型
7 评估模型准确率