基于BP神经网络的PID自适应控制——simulink平台(详细分析过程+完整代码+仿真结果)(二)

文章介绍了如何使用前馈神经网络模型训练PID控制器参数,并在仿真环境中展示其在正弦波参考输入下的控制系统响应。通过神经网络预测PID控制器输出,实现自适应控制功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先把一小部分代码放在这,后面再写

% 创建神经网络模型
net = feedforwardnet(10); % 创建一个具有10个隐藏层神经元的前馈神经网络
net.trainFcn = 'trainlm'; % 使用Levenberg-Marquardt训练算法
net.layers{1}.transferFcn = 'tansig'; % 设置第一个隐藏层的激活函数为双曲正切函数
net.layers{2}.transferFcn = 'purelin'; % 设置输出层的激活函数为线性函数

% 生成训练数据
% 这里的训练数据可以根据实际情况进行设置,例如采用仿真模型生成
% 这里仅作示例,假设训练数据为一组随机生成的输入和对应的输出
input_data = randn(100, 1); % 生成100个随机输入数据
output_data = sin(input_data) + 0.1 * randn(100, 1); % 根据输入数据生成对应的输出数据

% 训练神经网络模型
net = train(net, input_data', output_data');

% 设置PID控制器的初始参数
Kp = 1;
Ki = 0.1;
Kd = 0.01;

% 模拟控制系统
t = 0:0.01:10; % 时间向量
r = sin(t); % 参考输入信号(例如,正弦波信号)
y = zeros(size(t)); % 控制系统的输出信号

% 运行控制系统
for i = 2:length(t)
    % 计算PID控制器的输出
    e = r(i) - y(i-1); % 计算控制误差
    u_pid = Kp * e + Ki * trapz(t(1:i), e) + Kd * (e - (y(i-1) - y(i-2)) / 0.01)
基于BP神经网络PID控制是一种使用反向传播算法训练的神经网络来实现PID控制器的方法。PID控制器是一种常用的控制器类型,可以用于调节系统的输出以使其达到期望值。 在使用BP神经网络实现PID控制时,首先需要设计一个多层前馈神经网络,其中输入层接收系统的状态信息,输出层对应于控制器的输出。中间的隐藏层可以根据需要设置多个。 训练神经网络过程包括以下几个步骤: 1. 收集训练数据:通过将系统输入和输出的组合作为训练样本,收集一系列系统的输入输出数据。 2. 数据预处理:对训练数据进行归一化或标准化处理,以便提高训练效果。 3. 网络初始化:初始化神经网络的权重和偏置。 4. 前向传播:将输入样本通过神经网络前向传播,得到网络的输出。 5. 计算误差:将网络的输出与期望输出进行比较,计算误差。 6. 反向传播:使用误差进行反向传播,更新网络的权重和偏置。 7. 重复以上步骤:重复进行训练过程,直到达到预定的训练停止条件。 训练完成后,可以使用BP神经网络作为PID控制器的一部分,根据系统的状态信息输入到网络中,通过网络的输出得到控制器的输出,从而实现对系统的控制。 需要注意的是,BP神经网络的训练过程可能需要大量的数据和计算资源,并且需要合适的网络结构和参数设置,以获得良好的控制效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三十二画生H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值