Econometric Analysis(Greene) 7th 附录:矩阵代数(Matrix Algebra)1

本文介绍了矩阵和向量的基本定义及其表示方法,包括矩阵的维度、类型(如对称矩阵、对角矩阵)、以及如何表示矩阵中的元素等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

术语 Terminology

矩阵是对数字的一个矩形排列,记为:

$$ \mathbf{A}^{m\times n}=\left[ a_{ij} \right] =\left[ \mathbf{A} \right] _{ij}=\left[ \begin{matrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& \ddots& \vdots\\ a_{m1}& a_{m2}& \cdots& a_{mn}\\ \end{matrix} \right] $$

这就是矩阵的典型表示方式。矩阵中的带下标的元素通常被读作 a_{\text{row}, \text{column}}

表 A.1 中列举了一个例子。在这些数据中,视年份(Year)为行,变量(Consumption, GNP, GNP Deflator, Discount Rate)为列

向量(vector)是被排成一行或者一列的有序数集。由此,行向量(row vector) 也就是一个只有一行的矩阵,而列向量(column vector) 就是一个只有一列的矩阵。因此,在表 A.1 中,1972 年所观测的 5 个变量(包括日期)便构成了一个行向量,而 9 个 Consumption 数值构成的时间序列便是一个列向量。

一个矩阵也可以被视为一组列向量或行向量。矩阵的维数(dimensions) 是它所包含的行数和列数。“\mathbf{A}^{m\times n} 是一个 m\times n 矩阵(读作 ‘mn’)” 的说法表明,\mathbf{A}^{m\times n}mn 列。如果 m=n, 则 \mathbf{A} 是一个方阵(square matrix).

  • 我们用 A\in \mathbb{R}^{m\times n} 来代表一个 mn 列的矩阵,矩阵中的元素(entries) 为实数
  • 我们用 x\in \mathbb{R}^n 来代表一个包含 n 个元素的列向量。按照惯例,n 维向量经常被看作一个 n\times 1 (n1 列)的矩阵。我们经常用 x^{T}表示一个 1n 列的行向量(其中 x^{T} 表示 x 的转置)
  • x_i 表示向量 x 中的第 i 个元素:

x=\left[ \begin{array}{c} x_1\\ x_2\\ \vdots\\ x_n\\ \end{array} \right]

  • 我们用 a_{ij}(或 A_{ij}, A_{i,j}, 等) 来表示 A 中第 i 行第 j 列的元素:

A=\left[ \begin{matrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& \ddots& \vdots\\ a_{m1}& a_{m2}& \cdots& a_{mn}\\ \end{matrix} \right]

  • 我们用 a_jA_{:,j} 来表示 A 的第 j

A=\left[ \begin{matrix} |& |& \\ a_1& a_2& \cdots\\ |& |& \\ \end{matrix}\begin{array}{c} |\\ a_n\\ |\\ \end{array} \right]

  • 我们用 a^{T}_iA_{i,:} 来表示 A 的第 i

A=\left[ \begin{array}{c} \begin{matrix} -& a_{1}^{T}& -\\ \end{matrix}\\ \begin{matrix} -& a_{2}^{T}& -\\ \end{matrix}\\ \begin{matrix} & \vdots& \\ \end{matrix}\\ \begin{matrix} -& a_{m}^{T}& -\\ \end{matrix}\\ \end{array} \right]

  • 对称阵(symmetric matrix): 对所有 ij, 都有 a_{ij}=a_{ji}

  •  对角阵(diagonal matrix): 所有非零元素都出现在主对角线(即从左上角到右下角的对角线)上的方阵。

 

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙珩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值