Econometric Analysis(Greene) 7th 附录:矩阵代数(Matrix Algebra)1

术语 Terminology

矩阵是对数字的一个矩形排列,记为:

$$ \mathbf{A}^{m\times n}=\left[ a_{ij} \right] =\left[ \mathbf{A} \right] _{ij}=\left[ \begin{matrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& \ddots& \vdots\\ a_{m1}& a_{m2}& \cdots& a_{mn}\\ \end{matrix} \right] $$

这就是矩阵的典型表示方式。矩阵中的带下标的元素通常被读作 a_{\text{row}, \text{column}}

表 A.1 中列举了一个例子。在这些数据中,视年份(Year)为行,变量(Consumption, GNP, GNP Deflator, Discount Rate)为列

向量(vector)是被排成一行或者一列的有序数集。由此,行向量(row vector) 也就是一个只有一行的矩阵,而列向量(column vector) 就是一个只有一列的矩阵。因此,在表 A.1 中,1972 年所观测的 5 个变量(包括日期)便构成了一个行向量,而 9 个 Consumption 数值构成的时间序列便是一个列向量。

一个矩阵也可以被视为一组列向量或行向量。矩阵的维数(dimensions) 是它所包含的行数和列数。“\mathbf{A}^{m\times n} 是一个 m\times n 矩阵(读作 ‘mn’)” 的说法表明,\mathbf{A}^{m\times n}mn 列。如果 m=n, 则 \mathbf{A} 是一个方阵(square matrix).

  • 我们用 A\in \mathbb{R}^{m\times n} 来代表一个 mn 列的矩阵,矩阵中的元素(entries) 为实数
  • 我们用 x\in \mathbb{R}^n 来代表一个包含 n 个元素的列向量。按照惯例,n 维向量经常被看作一个 n\times 1 (n1 列)的矩阵。我们经常用 x^{T}表示一个 1n 列的行向量(其中 x^{T} 表示 x 的转置)
  • x_i 表示向量 x 中的第 i 个元素:

x=\left[ \begin{array}{c} x_1\\ x_2\\ \vdots\\ x_n\\ \end{array} \right]

  • 我们用 a_{ij}(或 A_{ij}, A_{i,j}, 等) 来表示 A 中第 i 行第 j 列的元素:

A=\left[ \begin{matrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& \ddots& \vdots\\ a_{m1}& a_{m2}& \cdots& a_{mn}\\ \end{matrix} \right]

  • 我们用 a_jA_{:,j} 来表示 A 的第 j

A=\left[ \begin{matrix} |& |& \\ a_1& a_2& \cdots\\ |& |& \\ \end{matrix}\begin{array}{c} |\\ a_n\\ |\\ \end{array} \right]

  • 我们用 a^{T}_iA_{i,:} 来表示 A 的第 i

A=\left[ \begin{array}{c} \begin{matrix} -& a_{1}^{T}& -\\ \end{matrix}\\ \begin{matrix} -& a_{2}^{T}& -\\ \end{matrix}\\ \begin{matrix} & \vdots& \\ \end{matrix}\\ \begin{matrix} -& a_{m}^{T}& -\\ \end{matrix}\\ \end{array} \right]

  • 对称阵(symmetric matrix): 对所有 ij, 都有 a_{ij}=a_{ji}

  •  对角阵(diagonal matrix): 所有非零元素都出现在主对角线(即从左上角到右下角的对角线)上的方阵。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙珩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值