术语 Terminology
矩阵是对数字的一个矩形排列,记为:
这就是矩阵的典型表示方式。矩阵中的带下标的元素通常被读作
表 A.1 中列举了一个例子。在这些数据中,视年份(Year)为行,变量(Consumption, GNP, GNP Deflator, Discount Rate)为列
向量(vector)是被排成一行或者一列的有序数集。由此,行向量(row vector) 也就是一个只有一行的矩阵,而列向量(column vector) 就是一个只有一列的矩阵。因此,在表 A.1 中,1972 年所观测的 5 个变量(包括日期)便构成了一个行向量,而 9 个 Consumption 数值构成的时间序列便是一个列向量。
一个矩阵也可以被视为一组列向量或行向量。矩阵的维数(dimensions) 是它所包含的行数和列数。“ 是一个 矩阵(读作 ‘ 乘 ’)” 的说法表明, 有 行 列。如果 , 则 是一个方阵(square matrix).
- 我们用 来代表一个 行 列的矩阵,矩阵中的元素(entries) 为实数
- 我们用 来代表一个包含 个元素的列向量。按照惯例, 维向量经常被看作一个 ( 行 列)的矩阵。我们经常用 表示一个 行 列的行向量(其中 表示 的转置)
- 用 表示向量 中的第 个元素:
- 我们用 (或 等) 来表示 中第 行第 列的元素:
- 我们用 或 来表示 的第 列
-
我们用 或 来表示 的第 行
- 对称阵(symmetric matrix): 对所有 和 , 都有
- 对角阵(diagonal matrix): 所有非零元素都出现在主对角线(即从左上角到右下角的对角线)上的方阵。