在数据结构与算法基础中,一个高效的算法能提升程序的效率,在日常的敲代码过程中,根据条件筛选出值是经常遇到的事,以下介绍一些简洁、而高效的写法.
列表
首先介绍的是列表生成式:[1, 2, 3, 4, 5, 6, 7, 8, 9] -> [i for i in range(1, 10)]
list_ = [i for i in range(1, 10)]
筛选列表中的数:例如a = [-1, 3, 0, -2, -6, 3, 6, 1, -9]
一般的筛选方法
a = [-1, 3, 0, -2, -6, 3, 6, 1, -9]
a_ = []
for i in a:
if i >= 0:
a_.append(i)
这种方法当然可以, 但是在执行的效率上会比较慢一点, 这里有更好的方法
一、filter函数
a = [-1, 3, 0, -2, -6, 3, 6, 1, -9]
a_ = filter(lambda x: x >= 0, a)
# 结果 a_ = [3, 0, 3, 6, 1]
二、列表解析
a = [-1, 3, 0, -2, -6, 3, 6, 1, -9]
a_ = [i for i in a if i >= 0]
# 结果 a_ = [3, 0, 3, 6, 1]
字典
使用字典生成式,生成一个键为学号,值为成绩的字典
from random import randint
student = {i: randint(60, 100) for i in range(1, 10)}
# 结果 student = {1: 78, 2: 89, 3: 72, 4: 68, 5: 100, 6: 71, 7: 91, 8: 69, 9: 88}
用字典解析,筛选出80分以上的同学
student = {1: 78, 2: 89, 3: 72, 4: 68, 5: 100, 6: 71, 7: 91, 8: 69, 9: 88}
student_new = {i: j for i, j in student.item() if j > 80}
# 结果 student_new = {2: 89, 5: 100, 7: 91, 9: 88}
集合
集合解析和列表解析类似, 首先先生成一个随机的集合,假设集合中要筛选出对3求余为0的数。
a = {0, 1, 3, 6, -2, -9, -6, -1}
a_new = {i for i in a if i % 3 == 0}
# 结果 a_new = {0, 3, 6, -9, -6}