人工智能
深城肥肠
这个作者很懒,什么都没留下…
展开
-
循环神经网络(RNN)
1. 场景与应用 在循环神经网络可以用于文本生成、机器翻译还有看图描述等,在这些场景中很多都出现了RNN的身影。2. RNN的作用 传统的神经网络DNN或者CNN网络他们的输入和输出都是独立的。对于这些模型输入的数据跟输出的数据大多是关联不太紧密的场景,但是有些场景输入的数据对后面输入的数据是有关系的,或者说后面的数据跟前面的数据是有关联的。例如,对于文本类的数据,...原创 2018-03-31 00:56:15 · 2931 阅读 · 0 评论 -
Caffe数据层
Caffe数据层1 简介要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。层有很多种类型,比如Data,Convolution,Pooling等,层之间的...原创 2018-07-30 01:42:24 · 195 阅读 · 0 评论 -
图像数据转换成db(leveldb/lmdb)文件
图像数据转换成db(leveldb/lmdb)文件1 简介在深度学习的实际项目中,我们经常甬道的原始数据是图片文件,如jpg、png等,而且有可能图片的大小不一致。而在caffe中经常使用的数据类型是lmdb和了leveldb,因此就产生了这样一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件。在caffe中,作者为我们提供这样一个文件:c...原创 2018-07-26 21:22:58 · 2048 阅读 · 0 评论 -
caffe 运行命令解析
caffe 运行命令解析1 简介caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp...原创 2018-07-22 17:53:03 · 603 阅读 · 0 评论 -
最新计算机视觉动态哪里看?
最新计算机视觉动态哪里看?1 背景会议论文比期刊论文更重要的原因是:(1)因为机器学习、计算机视觉和人工智能领域发展非常迅速,新的工作层出不穷,如果把论文投到期刊上,一两年后刊出时就有点out了。因此大部分最新的工作都首先发表在顶级会议上,这些顶级会议完全能反映“热门研究方向”、“最新方法”。(2)很多经典工作大家可能引的是某顶级期刊上的论文,这是因为期刊论文表述得比较完整、实验充分。...转载 2018-08-19 14:25:58 · 1747 阅读 · 0 评论 -
机器视觉开源代码集合
本文转自机器视觉开源代码集合。非本人自己收集。一、特征提取Feature Extraction:SIFT [1]Demo program][SIFT Library][VLFeat]PCA-SIFT [2][Project]Affine-SIFT [3][Project]SURF [4][OpenSURF] [Matlab Wrapper]Affine Covariant Feat...转载 2018-09-27 00:24:52 · 1479 阅读 · 0 评论 -
Blob分析
直接上代码,理论和结果后面补充。* Blob分析* 常用方法是对图像进行二值化+形态学+特征选择。并不是所有的都用到这三个,也可以只有其中两个* 他的用法是非常灵活的* 描述:通过Blob分析获取瓶盖open_framegrabber ('DirectShow', 1, 1, 0, 0, 0, 0, 'default', 8, 'rgb', -1, 'false', 'default',...原创 2018-09-27 00:31:52 · 3189 阅读 · 0 评论 -
正则表达式
正则表达式正则表达式是处理字符串的强大工具,拥有独特的语法和独立的处理引擎。我们在大文本中匹配字符串时,有些情况用str自带的函数(比如find, in)可能可以完成,有些情况会稍稍复杂一些,这个时候我们需要一个某种模式的工具,这个时候正则表达式就派上用场了。说起来正则表达式效率上可能不如str自带的方法,但匹配功能实在强大太多。1 语法当你要匹配 一个/多个/任意个 数字/字...原创 2018-10-14 17:16:06 · 1187 阅读 · 0 评论 -
人脸检测
人脸检测1 准备工作ubuntu 系统anaconda 3 环境下安装dlib库,打开terminal,输入:pip install dlib 进行安装。如图所示安装完dlib后进行测试,在jupyter notebook中import dlib如果运行没有出错,那么dlib安装成功。2 人脸检测通过官网下载dlib下载的人脸检测检测代码,经过修改和备注都...原创 2018-07-29 00:46:37 · 977 阅读 · 0 评论 -
caffe 训练和测试自己的图片
caffe 训练和测试自己的图片1. 数据准备如果网络比较好,可以去imagenet下载。但是由于网络的原因我没有下载。这里测试的数据是在网上找的。总共有500张,分别为大巴车、恐龙、大象、鲜花和马,美个类有100张图片,分别以3、4、5、6、7开头,各为一类。需要的可以在这里下载。之后为了训练作准备,我从每一类各取出20张作为测试集,其余的作为训练数据。那么,共有400张图作训练...原创 2018-07-28 22:16:37 · 758 阅读 · 0 评论 -
caffe六种优化方法
caffe六种优化方法1 简介所谓的优化方法是指对于训练网络的loss进行优化。caffe中在Solver配置,在神经网络中,用forward pass来求解loss,用backward pass来求解梯度。六种优化方法分别为。Stochastic Gradient Descent (type: “SGD”),AdaDelta (type: “AdaDelta”)Adapti...原创 2018-07-19 01:57:42 · 1781 阅读 · 2 评论 -
卷积神经网络(CNN)
卷积神经网络一、摘要 卷积网络(Convolutional network)也叫神经网络,是一种专门用来处理具有类似网格结构的数据的神经网络。例如时间序列数据和图像数据(可以看做二维的像素网络)。卷积网络在诸多应用领域表现得都比较出色。卷积网络是指那些至少在网络的一层中使用卷积运算来代替 一般的矩阵乘法运算的神经网络。二、卷积运算 在通常形式中,卷积是两个实变函...原创 2018-04-09 19:19:45 · 2714 阅读 · 0 评论 -
机器学习之Pandas教程(下)
机器学习之pandas(下)是接着上一节,是继续学习机器学习中常用的pandas操作,只要跟着这个教程一步一步操作,多加练习,对于机器学习中常用的操作就基本掌握了。1. Groupby和Aggregate# 导入所需要的库import pandas as pdimport numpy as np%matplotlib inline # 生成数据# 举个栗子,假...原创 2018-04-02 22:10:36 · 767 阅读 · 0 评论 -
LSTM(Long Short-Term Memory)长短期记忆网络
1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的。但是,对于RNN网络存在长期依赖问题,比如看电影的时候,某些细节需要依赖很久以前的一些信息,而RNN网络并不能很好的保存很久之前的信息,随着时间间隔不断增大,RNN网络会丧失学习到很远的信息能力,也就是说记忆容量是有限的。例如,...原创 2018-04-04 00:25:14 · 4325 阅读 · 1 评论 -
机器学习中的数据清洗与特征工程
背景随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团购系统中大量地应用到了机器学习和数据挖掘技术,例如个性化推荐、筛选排序、搜索排序、用户建模等等,为公司创造了巨大的价值。本文主要介绍在美团的推荐与个性化团队实践中的数据清洗转载 2018-04-04 21:08:56 · 1055 阅读 · 0 评论 -
机器学习之Pandas教程(上)
1. 教程简介 本教程分为上、下两节,主要针对机器学习数据处理做的简单教程。本教程主要不是讲解pandas函数的使用,而是实验性的操作学习方式,对于使用本教程的学者,可以根据课程一步一步去实验,对于不懂的函数以及实现方式可以在官网进行查询。注意,重点还是动手自己操作。2. Pandas简介 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的...原创 2018-04-07 17:12:29 · 1829 阅读 · 0 评论 -
机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)
摘要: 数据挖掘、机器学习和推荐系统中的评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)简介。引言: 在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。业内目前常常采用的评价指标有准确率(Precision)、召回率(Recall)、F值(F-Measure)等,下图是不同机器学习算法的评价指标。下文讲对其中某些指标做简要介绍。本文针...转载 2018-04-06 17:11:07 · 3715 阅读 · 0 评论 -
深度学习训练数据打标签过程
深度学习训练数据打标签过程为了获取大量的图片训练数据,在采集数据的过程中常用视频的方式采集数据,但对于深度学习,训练的过程需要很多的有有标签的数据,这篇文章主要是解决视频文件转换成图片文件,并加标签,最后把数据存储到pkl文件中,为后续深度学习提供数据。1. video to image这个应用,主要是把视频切分成图片,并保存到本地,可以自定义切分的时间间隔;在深度学习中,由于...原创 2018-04-13 17:45:09 · 57531 阅读 · 9 评论 -
机器学习流程、有监督学习、无监督学习、数据预处理、特征工程
机器学习流程、有监督学习、无监督学习、数据预处理、特征工程总共分为四个notebook,主要讲解机器学习的流程,有监督无监督学习,数据处理与特征工程。1.背景在我们学习某个行业之前,首先大概了解一下这个行业的发展,以及要研究的方向,以下是从网上找的一些有关于机器学习的一些发展史。1.1 机器学习40年发展史1.2 机器学习的前世今生1.3 一文让你了解机器学习的历...原创 2018-05-10 17:39:43 · 8272 阅读 · 0 评论 -
Blob分析案例(硬币检测)
Blob分析案例(硬币检测)本案例是对硬币进行识别,使用halcon。实现的效果和代码如下。1 效果经过灰度化后的图像,如图所示:经过Blob分析,最终得到的结果如下图所示,能够很好的找到硬币所在的区域,并获取面积和坐标,这个是针对像素点的面积。2 代码实现* 案例:硬币识别* 连接相机open_framegrabber ('DirectShow', 1, 1, 0, 0, 0...原创 2018-09-29 21:57:46 · 2844 阅读 · 0 评论