机器学习流程、有监督学习、无监督学习、数据预处理、特征工程
总共分为四个ipynp文件,主要讲解机器学习的流程,有监督无监督学习,数据处理与特征工程。
1.背景
在我们学习某个行业之前,首先大概了解一下这个行业的发展,以及要研究的方向,以下是从网上找的一些有关于机器学习的一些发展史。
1.1 机器学习40年发展史
1.2 机器学习的前世今生
1.3 一文让你了解机器学习的历史和真谛
2.机器学习综述
经典定义:利用经验改善自身的性能。从过去的大量数据中”总结“出来”泛化规律“的能力,用于新数据预测。从分类上大体可以分为3类。
2.1 监督学习
使用预定义的“训练示例”集合,训练系统,便于其在新数据被馈送时也能得出结论。系统一直被训练,直到达到所需的精度水平。
定义:指有求知欲的学生从老师那里获取知识、信息,老师提供对错指示、告知最终答案的学习过程。 在机器学习中,计算机 = 学生,周围的环境 = 老师。
最终目标:根据在学习过程中获得的经验技能,对没学习过的问题也可以做出正确解答,使计算机获得这种泛化能力。
应用:手写文字识别、声音处理、图像处理、垃圾邮件分类与拦截、网页检索、基因诊断、股票预测等。
典型任务:预测数值型数据的回归、预测分类标签的分类、预测顺序的排列。
2.2 无监督学习
给系统一堆无标签数据,它必须自己检测模式和关系。 系统要用推断功能来描述未分类数据的模式。
定义:指在没有老师的情况下,学生自学的过程。 在机器学习中,计算机从互联网中自动收集信息,并获取有用信息。
最终目标:无监督学习不局限于解决有正确答案的问题,所以目标可以不必十分明确。
应用:人造卫星故障诊断、视频分析、社交网站解析、声音信号解析、数据可视化、监督学习的前处理工具等。
典型任务:聚类、异常检测。
2.3 强化学习
强化学习其实是一个连续决策的过程,这个过程有点像有监督学习,只是标注数据不是预先准备好的,而是通过一个过程来回调整,并给出“标注数据”。
定义:指在没有老师提示的情况下,自己对预测的结果进行评估的方法。通过这样的自我评估,学生为了获得老师的最高价将而不断的进行学习。 强化学习被认为使人类主要的学习模式之一。
最终目标:使计算机获得对没学习过的问题也可以做出正确解答的泛化能力。
应用:机器人的自动控制、计算机游戏中的人工智能、市场战略的最优化等。
典型任务:回归、分类、聚类、降维。
3. 机器学习任务
在机器学习中,要解决某一问题,通常把问题转为成分类、回归、聚类、强化学习这四类问题进行解决。
3.1 分类问题
根据数据样本上抽取出的特征,判定其属于有限个类别中的哪一个。在实际中做分类的时候,大多会产出一个概率值,对概率值做排序得到该样本属于哪个类别的概率最高。
应用:垃圾邮件识别,结果类别为垃圾邮件和正常邮件;文本情感褒贬分析,结果类别褒、贬。
3.2 回归问题
根据样本上抽取的特征,预测连续值结果。属于有监督学习。
应用:预测电影的票房值,预测某城市的房价等。
3.3 聚类问题
根据数据样本抽取的特征,挖掘出数据的关联模式。
应用:相似用户挖掘、新闻聚类等。
3.4 强化学习
研究如何基于环境而行动,以获得最大和的预期收益。
应用:在游戏开发中可能会用到,获取最高的分;机器人任务的完成
4. 基本术语
监督学习的算法是有标签的,或者说在数据中会有一部分是带参考答案的数据,然后在这些样本之上进行学习。如图所示,引用西瓜书的课件。
每一条记录为:一个实例(instance)或样本(simple)
数据集:所有记录的集合 ;
训练集:含有参考答案的数据,训练集还可以分成训练集和验证集;
测试集:用于实际预测所用到的数据。
5. 机器学习流程
对于运用机器学习去完成一个问题的流程,通常分为四个步骤:数据预处理(Preprocessing)、模型学习(Learning)、模型评估(Evaluation)、新样板预测(Prediction)。如图所示:
前三个环节都线下的部分,最后新样板的预测时线上的部分。第四个部分是开发部分的内容。主要影响结果是前三个部分。
数据预处理:通常会把原始的数据抽取出来,做一些数据的清洗,做一些特征工程的操作,特征抽取、幅度缩放、特征选择、维度约减等。
模型学习:在这一部分通常会做模型选择、交叉验证、结果评估、超参数选择等;
模型评估:会根据不同的场景选择评估标准。常用的评估标准是均方误差和平均绝对误差,但是有时会根据不同的场景选择或自定义评估标准,这些问题在kaggle上经常见到。
6. 机器学习库sklearn
6.1 简介
在机器学习中最常用的库是sklearn,它是站在巨人的肩膀上搭建起来的库,通常把机器学习的一些算法都封装好好了,只需要调用接口就可以实现某一个算法。在学习sklearn中最好的方式是通过sklearn的官方文档进行学习。
在sklearn的使用过程中常用的三个页面:scikit-learn Tutorials 入门页面;User Guide 算法指南页面,说明这个算法如何使用,如何实现等;API Reference 算法API。
6.2 sklearn算法
6.2.1 Scikit-Learn机器学习算法
from IPython.display import Image
%matplotlib inline
# Added version check for recent scikit-learn 0.18 checks
from distutils.version import LooseVersion as Version
from sklearn import __version__ as sklearn_version
6.2.2 机器学习算法选择
6.2.3scikit-learn初探
scikit-learn中自带了一些数据集,比如说最著名的Iris数据集。
数据集中第3列和第4列数据表示花瓣的长度和宽度。而类别已经转成了数字,比如
0=Iris-Setosa, 1=Iris-Versicolor, 2=Iris-Virginica.
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('Class labels:', np.unique(y))
Class labels: [0 1 2]
通常我们会把数据集切分成训练集和测试集,这里70%的训练集,30%的测试集。
if Version(sklearn_version) < '0.18':
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0)
X_train.shape
(105, 2)
X_test.shape
(45, 2)
X.shape
(150, 2)
y_train.shape
(105,)
y_test.shape
(45,)
对特征做标准化
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
StandardScaler(copy=True, with_mean=True, with_std=True)
sc.scale_
array([ 1.79595918, 0.77769705])
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
6.2.4 用scikit-learn中的感知器做分类
- 我们先用
plot_decision_region
函数来做一个可视化,方便一会儿直观看分类结果。 - 在这里不算重点,会与后面的深度学习有关联
from sklearn.linear_model import Perceptron
#ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
ppn = Perceptron()
ppn.fit(X_train_std, y_train)
Perceptron(alpha=0.0001, class_weight=None, eta0=1.0, fit_intercept=True,
max_iter=None, n_iter=None, n_jobs=1, penalty=None, random_state=0,
shuffle=True, tol=None, verbose=0, warm_start=False)
ppn.coef_
array([[-1.48746619, -1.1229737 ],
[ 3.0624304 , -2.18594118],
[ 2.9272062 , 2.64027405]])
ppn.intercept_
array([-1., 0., -2.])
y_pred = ppn.predict(X_test_std)
y_pred
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0,
0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 2, 0, 2, 0, 0])
y_test
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0,
0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0])
y_pred == y_test
array([ True, True, True, True, True, True, True, True, True,
True, False, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, False, True, True, True, True, True, True, True,
True, False, True, True, True, True, True, True, True], dtype=bool)
print('Misclassified samples: %d' % (y_test != y_pred).sum())
Misclassified samples: 3
from sklearn.metrics import accuracy_score
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
Accuracy: 0.93
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
import warnings
def versiontuple(v):
return tuple(map(int, (v.split("."))))
# 可视化作用,绘制决边界
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)
# highlight test samples
if test_idx:
# plot all samples
if not versiontuple(np.__version__) >= versiontuple('1.9.0'):
X_test, y_test = X[list(test_idx), :], y[list(test_idx)]
warnings.warn('Please update to NumPy 1.9.0 or newer')
else:
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='',
alpha=1.0,
linewidths=1,
marker='o',
s=55, label='test set')
用标准化的数据做一个感知器分类器
%matplotlib inline
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined,
classifier=ppn, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/iris_perceptron_scikit.png', dpi=300)
plt.show()
6.2.5 通过逻辑回归预测属于每个类别的概率
(1). LR的简单复习
# sigmoid函数,通过选择合适的阈值来做分类
import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)
plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.ylim(-0.1, 1.1)
plt.xlabel('z')
plt.ylabel('$\phi (z)$')
# y axis ticks and gridline
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid(True)
plt.tight_layout()
# plt.savefig('./figures/sigmoid.png', dpi=300)
plt.show()
Image(filename='./images/03_03.png', width=500)
通过最小化损失函数求解权重
# 损失函数
def cost_1(z):
return - np.log(sigmoid(z))
def cost_0(z):
return - np.log(1 - sigmoid(z))
z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)
c1 = [cost_1(x) for x in z]
plt.plot(phi_z, c1, label='J(w) if y=1')
c0 = [cost_0(x) for x in z]
plt.plot(phi_z, c0, linestyle='--', label='J(w) if y=0')
plt.ylim(0.0, 5.1)
plt.xlim([0, 1])
plt.xlabel('$\phi$(z)')
plt.ylabel('J(w)')
plt.legend(loc='best')
plt.tight_layout()
# plt.savefig('./figures/log_cost.png', dpi=300)
plt.show()
(2). 使用scikit-learn训练LR
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=1000.0, random_state=0)
lr.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=lr, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/logistic_regression.png', dpi=300)
plt.show()
if Version(sklearn_version) < '0.17':
lr.predict_proba(X_test_std[0, :])
else:
lr.predict_proba(X_test_std[0, :].reshape(1, -1))
X_test_std[0,:]
array([ 0.70793846, 1.50872803])
X_test_std[0,:].reshape(1, -1)
array([[ 0.70793846, 1.50872803]])
lr.predict_proba(X_test_std[0,:].reshape(1, -1))
array([[ 2.05743774e-11, 6.31620264e-02, 9.36837974e-01]])
6.2.6 过拟合/overfitting 与 正则化/regularization
weights, params = [], []
for c in np.arange(0, 5):
lr = LogisticRegression(C=10**c, random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)
weights = np.array(weights)
plt.plot(params, weights[:, 0],
label='petal length')
plt.plot(params, weights[:, 1], linestyle='--',
label='petal width')
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.legend(loc='upper left')
plt.xscale('log')
# plt.savefig('./figures/regression_path.png', dpi=300)
plt.show()
6.2.7 最大间隔分类与支持向量机
(1). 通过松弛变量解决非线性切分情况
from sklearn.svm import SVC
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_linear.png', dpi=300)
plt.show()
(2). 神奇的SVM核函数完成非线性切分
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0,
X_xor[:, 1] > 0)
y_xor = np.where(y_xor, 1, -1)
plt.scatter(X_xor[y_xor == 1, 0],
X_xor[y_xor == 1, 1],
c='b', marker='x',
label='1')
plt.scatter(X_xor[y_xor == -1, 0],
X_xor[y_xor == -1, 1],
c='r',
marker='s',
label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
# plt.savefig('./figures/xor.png', dpi=300)
plt.show()
使用kernel trick在高维空间内找到一个可切分的超平面
svm = SVC(kernel='rbf', random_state=0, gamma=0.10, C=10.0)
svm.fit(X_xor, y_xor)
plot_decision_regions(X_xor, y_xor,
classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_rbf_xor.png', dpi=300)
plt.show()
from sklearn.svm import SVC
svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_rbf_iris_1.png', dpi=300)
plt.show()
svm = SVC(kernel='rbf', random_state=0, gamma=100.0, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_rbf_iris_2.png', dpi=300)
plt.show()
6.2.8 决策树学习
(1). 最大化信息增益,找到最好的切分点
import matplotlib.pyplot as plt
import numpy as np
def gini(p):
return p * (1 - p) + (1 - p) * (1 - (1 - p))
def entropy(p):
return - p * np.log2(p) - (1 - p) * np.log2((1 - p))
def error(p):
return 1 - np.max([p, 1 - p])
x = np.arange(0.0, 1.0, 0.01)
ent = [entropy(p) if p != 0 else None for p in x]
sc_ent = [e * 0.5 if e else None for e in ent]
err = [error(i) for i in x]
fig = plt.figure()
ax = plt.subplot(111)
for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
['Entropy', 'Entropy (scaled)',
'Gini Impurity', 'Misclassification Error'],
['-', '-', '--', '-.'],
['black', 'lightgray', 'red', 'green', 'cyan']):
line = ax.plot(x, i, label=lab, linestyle=ls, lw=2, color=c)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
ncol=3, fancybox=True, shadow=False)
ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
plt.ylim([0, 1.1])
plt.xlabel('p(i=1)')
plt.ylabel('Impurity Index')
plt.tight_layout()
#plt.savefig('./figures/impurity.png', dpi=300, bbox_inches='tight')
plt.show()
(2). 建一颗决策树
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)
tree.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined, y_combined,
classifier=tree, test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/decision_tree_decision.png', dpi=300)
plt.show()
from sklearn.tree import export_graphviz
dot_data = export_graphviz(tree,
out_file='tree.dot',
feature_names=['petal length', 'petal width'])
Note
If you have scikit-learn 0.18 and pydotplus installed (e.g., you can install it via pip install pydotplus
), you can also show the decision tree directly without creating a separate dot file as shown below. Also note that sklearn 0.18
offers a few additional options to make the decision tree visually more appealing.
import pydotplus
from IPython.display import Image
from IPython.display import display
if Version(sklearn_version) >= '0.18':
try:
import pydotplus
dot_data = export_graphviz(
tree,
out_file=None,
# the parameters below are new in sklearn 0.18
feature_names=['petal length', 'petal width'],
class_names=['setosa', 'versicolor', 'virginica'],
filled=True,
rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data)
display(Image(graph.create_png()))
except ImportError:
print('pydotplus is not installed.')
(3). 使用随机森林对树做叠加,变成增强分类器
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(criterion='entropy',
n_estimators=10,
random_state=1,
n_jobs=2)
forest.fit(X_train, y_train)
plot_decision_regions(X_combined, y_combined,
classifier=forest, test_idx=range(105, 150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/random_forest.png', dpi=300)
plt.show()
6.2.9 K最近邻,朴素的分类器
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski')
knn.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=knn, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/k_nearest_neighbors.png', dpi=300)
plt.show()
bug解决
7.数据处理
这部分主要是解决机器学习中数据的处理问题,主要是应用代码来实现相应的操作,代码部分放在GitHub中可以找到。
8.回归问题与建模分析
主要是对回归问题的建模与分析结合例子来讲解回归问题,主要是运用代码实现问题的解决过程,实现的代码在GitHub中可以找到。
参考文献:
2.七月在线课件