leetcode 5:最长回文子串

描述:

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

 

思路:中心扩散方法

当left = right 的时候,回文中心是一共字符,奇数回文子串 

当right = left +1 的时候,此时回文中心是两个字符,偶数回文子串

 

思路:Mark 动态规划 -> 遍历左右边界

T1:如果一个子串两头的字符不相等,那该字符串一定不是回文串

T2:状态转移方程

上面的状态转移方程表示,当s[i]=s[j]时,如果s[i+1...j-1]是回文串,则s[i...j]也是回文串;如果s[i+1...j-1]不是回文串,则str[i...j]不是回文串。

class Solution:
    def longestPalindrome(self, s: str) -> str:
        n = len(s)
        dp = [[False] * n for _ in range(n)]
        ans = ""
        # 枚举子串的长度 l+1
        for l in range(n):
            # 枚举子串的起始位置 i,这样可以通过 j=i+l 得到子串的结束位置
            for i in range(n):
                j = i + l
                if j >= len(s):
                    break
                if l == 0:
                    dp[i][j] = True
                elif l == 1:
                    dp[i][j] = (s[i] == s[j])
                else:
                    dp[i][j] = (dp[i + 1][j - 1] and s[i] == s[j])
                if dp[i][j] and l + 1 > len(ans):
                    ans = s[i:j+1]
        return ans

思路:Manacher算法

**专门用于查找最长回文子串的算法,时间复杂度O(n)

**面试和笔试是不需要的

T1:将原始字符串做了预处理,在预处理字符串上执行 [动态规划]  和 [中心扩散] 方法

 

动态规划

Q1:什么是动态规划

动态规划就是寻找最优解的过程

Q2:判断是否用动态规划

一个问题看上去有很多种可能,但是求解最优解。如最大值,最小值,最短子串,最长子串等,选择动态规划

状态转移方程:从上一个状态到下一个状态存在一些变化,以及基于这些变化的最终决策结果

数学规划推导

 

 

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读