使用Movidius神经棒过程的问题记录和探索

本文记录了使用Movidius NCSDK在安装、编译模型、输入输出Node命名等方面遇到的问题及解决办法,包括一代棒跑caffe模型出现的错误和二代棒用OpenVINO跑TensorFlow VGG16模型的调试过程。
摘要由CSDN通过智能技术生成

一、安装NCSDK

地址:https://github.com/movidius/ncsdk

安装步骤就跟着官方来,很简单

在make examples时,我出现了2代棒USB无法识别的问题:[Error 7] Toolkit Error: USB Failure. Code: Error opening devic

原因:英特尔说2代不支持NCSDK,大家得去用它新出的OpenVINO的SDK(REFRENCE
在这里插入图片描述

二、NCSDK的几个指令

其实在/ncsdk/examples/中的makefile都有说明,在此总结

在编译自己的模型时,我们重点关注一下两个指令(其实也是一个)

1、mvNCCompile

这个是编译自己的模型并生成能够被神经棒识别的graph的重要指令
使用方法:

mvNCCompile model/path -in=input_node_name -on=output_node_name 

重要的就是这三个参数,具体可以mvNCCompile -h查看,但是有些限制
(0)本身这个神经棒能做的运算就有局限,例如MobileNet就没办法跑因为有不支持的层
会抛错[Error 5] Toolkit Error: Stage Details Not Supported: IsVariableInitialized
在这里插入图片描述

(1)必须是单个输入和单个输出(可能3个也可以,还没试验,后期补充)

(2)必须是整个模型完整的输入输出,不能是中间层

(3)模型大小有限制,我测试VGG16模型>500M抛出

/usr/local/bin/ncsdk/Controllers/FileIO.py:65: UserWarning: You are using a large type. Consider reducing your data sizes for best performance

并且影响后续的mvNCProfile抛错
在这里插入图片描述

2、mvNCProfile

是在complie的基础上生成评估的结果,和Compile用法相同

3、mvNCCheck

对比在CPU/GPU和神经棒上测试的结果对比,包括时长、accuracy等

三、输入输出Node名字

我是基于keras(tf后端)做的,一开始不知道命名方式,总是不能正确的给on赋值

目前我的解决方式是在保存模型的时候加一行

conf = sess.graph.get_operations()
print(conf)

然后把结果打印出来,然后再找输出节点的名字

但我总结规律,大概率是

output-layer-name/Operation-name

例如predictions/Softmax,reshape_2/Reshape

欢迎各位指正啊!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值