自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(73)
  • 收藏
  • 关注

原创 一文吃透机器学习与深度学习的差异

机器学习,作为人工智能领域的关键分支,旨在让计算机通过数据学习规律和模式,从而实现对未知数据的预测或决策。它的核心思想是从数据中自动提取特征和模式,而不是依赖于预先编写的明确规则。例如,当我们要构建一个垃圾邮件分类器时,传统的编程方式需要人为制定一系列复杂的规则,如关键词匹配、发件人地址判断等,但这样的方式往往难以应对不断变化的垃圾邮件形式。而机器学习则通过收集大量已标记的垃圾邮件和正常邮件数据,让模型自动学习这些数据中的特征和模式,如邮件内容中的词汇分布、邮件结构特征等。

2026-01-11 21:31:28 816

原创 探秘大模型框架:解锁AI新世界的钥匙

大模型框架,简单来说,就是用于开发、训练和部署大模型的一系列工具和库的集合。它就像是建筑的框架,为大模型的构建提供了基础的结构和支撑。没有这个框架,开发大模型就如同在没有蓝图的情况下建造摩天大楼,不仅效率低下,而且容易出错。以常见的深度学习框架 TensorFlow 和 PyTorch 为例,它们为大模型的开发提供了丰富的功能和工具,包括张量运算、神经网络层定义、自动求导等。这些功能使得开发者可以更加专注于模型的设计和优化,而不必过多关注底层的实现细节。

2025-12-04 21:18:39 758

原创 深入Spark核心:Shuffle全剖析与实战指南

在 Spark 的分布式计算体系里,Shuffle 被定义为数据重新分布的关键过程。当我们执行那些需要跨分区聚合数据的操作时,Shuffle 便会被触发。其核心任务是将上游 Stage 的输出数据,按照特定的规则重新分配到下游 Stage 的各个分区中。简单来说,Shuffle 就像是一场数据的 “大迁徙”,它会把分散在各个节点、各个分区中,具有相同特征(通常是相同的 key)的数据汇聚到一起,以便后续的计算和处理。比如,当我们对一个包含用户交易记录的数据集执行groupByKey。

2025-12-01 21:46:08 950

原创 一文搞懂机器学习中的线性回归,纯干货!

线性回归作为机器学习领域中最为基础的算法之一,以其简洁的模型结构和明确的原理,在众多实际应用场景中发挥着重要作用。从简单的房价预测到复杂的电商销售额预估,从能源消耗管理到用户行为分析,线性回归为我们提供了一种直观且有效的数据建模方式。通过对线性回归的深入探讨,我们了解到其核心在于构建自变量与因变量之间的线性关系,利用损失函数衡量预测误差,并借助优化方法寻找最优解。

2025-11-23 22:26:44 92

原创 再谈向量数据库:AI时代的存储新引擎

向量数据库,是一种专门设计用于存储和查询高维向量数据的数据库系统。它能高效地处理由文本、图像、音频、视频等非结构化数据通过嵌入(Embedding)技术转换得到的向量。与传统数据库不同,向量数据库聚焦于相似性搜索,旨在回答 “像什么” 和 “有多像” 这类问题,通过计算向量间的相似度,找出与查询向量在语义或特征上接近的数据。而传统数据库主要处理结构化数据,以精确匹配为核心,回答的是 “有没有” 和 “是多少” 的问题。

2025-11-18 21:54:39 578

原创 解锁Scala高阶函数:开启函数式编程新世界

通过本文的深入探讨,我们全面认识了 Scala 高阶函数这一强大的编程工具。高阶函数允许接收函数作为参数或返回函数,这使得 Scala 代码具有更高的抽象层次和更强的表达能力。它在代码复用、抽象简化逻辑以及模块化和可组合性方面展现出显著优势,通过常见的高阶函数实例(如mapfilterfold等)以及高级用法(函数作为参数传递、返回函数的高阶函数、函数组合),能够简洁高效地解决各种复杂的编程问题。在实际案例中,无论是数据处理还是业务逻辑实现,高阶函数都发挥了关键作用,大幅提升了代码的质量和开发效率。

2025-11-17 21:56:03 772

原创 Scala与Spark算子:大数据处理的黄金搭档

Spark 诞生于加州大学伯克利分校的 AMPLab,是一个开源且具有高速度、通用性的分布式计算引擎,专为大规模数据处理而设计,在大数据领域中占据着举足轻重的地位。它具备一系列令人瞩目的功能和优势,在数据处理方面表现卓越。其分布式计算特性,允许将大规模的数据处理任务分解为多个小任务,分配到集群中的不同节点上并行执行,从而显著提升处理速度。

2025-11-05 15:47:58 1001

原创 跨集群互信配置详解2025版

跨集群互信,简单来说,就是在多个独立的集群之间建立起一种信任机制,使得这些集群中的节点能够在安全的前提下,相互访问对方的资源、进行数据交互和协同工作。在分布式系统中,每个集群通常都有自己独立的安全边界和访问控制策略,而跨集群互信打破了这些边界,让不同集群如同一个整体般协作。实现跨集群互信,通常需要借助一些技术手段。比如,基于公钥基础设施(PKI)的证书机制,通过颁发和交换数字证书,各集群可以验证对方的身份,确保通信的真实性和安全性。

2025-11-04 16:18:20 1113

原创 深度解析HDFS小文件治理与优化之道

在 HDFS 的语境中,小文件通常指那些文件大小远小于 HDFS 默认块大小的文件。在常见的 Hadoop 版本里,HDFS 的默认块大小一般设置为 128MB 或者 256MB,当文件大小明显低于这个标准,如只有几 KB、几十 KB 或者几 MB 时,就会被视作小文件。例如,一个大小为 1MB 的日志文件,在默认块大小为 128MB 的 HDFS 集群中,它就属于小文件范畴。这些小文件虽然个体数据量不大,但在大数据应用场景下,其数量往往非常庞大,进而引发一系列性能和管理上的问题。

2025-11-04 15:51:29 1068

原创 Spark攻略:百亿行上万个字段大表的读写秘籍

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,最初诞生于加州大学伯克利分校的 AMPLab 实验室,如今已成为 Apache 软件基金会的顶级项目,被广泛应用于学术界和工业界。Spark 之所以备受青睐,主要源于其诸多显著特点。首先,速度快是 Spark 的一大核心优势。它采用内存计算技术,能够将中间结果存储在内存中,避免了像传统 MapReduce 那样频繁的磁盘 I/O 操作。

2025-10-30 15:11:48 643

原创 解锁特征工程:机器学习的秘密武器

特征工程,简单来说,就是运用数学、统计学以及领域知识,将原始数据巧妙转化为高质量特征的过程。这些特征,就如同机器学习算法模型的 “营养剂”,优质的特征能让模型变得更加强大。在机器学习领域,有一个非常经典的说法:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。” 这清晰地表明,特征工程在机器学习中占据着核心地位,起着决定性作用。从本质上讲,特征是从数据中精心抽取出来的、对结果预测具有重要价值的信息或属性。比如在预测客户是否会购买某产品时,客户的年龄、收入、购买历史等都可以作为特征。

2025-10-10 23:00:51 1178

原创 一文搞懂AI的“题海战术”:有监督学习

有监督学习是机器学习中的一种基本学习范式,它的核心在于利用带有标签(label)的训练数据集进行模型训练 。在这个过程中,每一个训练样本都由一组特征(feature)和一个对应的标签组成,特征是输入数据的各种属性,而标签则是我们希望模型学习到的输出结果。简单来说,有监督学习就像是在学习过程中有一位明确的 “导师”,这个 “导师” 通过一个个带有答案(标签)的例子,教导模型如何从输入特征中找到与输出标签之间的映射关系,从而让模型具备对未知数据进行准确预测的能力。例如,在图像识别任务里,我们把大量标有 “猫”“

2025-09-27 20:53:21 564

原创 大数据SQL行列转换:Hive、Spark、Flink行列转换大揭秘

在大数据处理的浩瀚宇宙中,HiveSQL、SparkSQL 和 FlinkSQL 各自闪耀,在行列转换这一关键领域,它们展现出了独特的魅力与差异。从语法复杂度来看,HiveSQL 实现行列转换主要依赖CASE语句结合聚合函数与GROUP BY语句,语法逻辑较为传统,对于熟悉 SQL 基本语法的开发者来说,容易理解,但在处理复杂行列转换需求时,代码会显得冗长繁琐。例如,在进行多列多行的复杂转换时,需要嵌套多个CASE语句,使得代码可读性降低。

2025-09-27 20:19:36 1022

原创 Flink提交流程全解析:从模式到实践

在深入探讨 Flink 的提交流程之前,我们先来认识一下 Flink 提交流程中涉及的关键组件,它们各司其职,协同工作,共同确保 Flink 作业的顺利执行。Flink 作为一款强大的大数据处理框架,其在不同模式下的提交流程各具特点,适应了多样化的应用场景和需求。在 Standalone 模式下,会话模式适合开发和测试环境中快速提交和执行作业,其提交流程相对简单直接,资源分配和任务调度在本地集群内完成。

2025-08-10 10:24:50 1107

原创 解锁主流数据库与大数据平台的行列转换秘籍

本文比较了主流数据库和大数据平台中的行列转换实现方法。在MySQL中通过CASE WHEN和GROUP BY实现行转列,UNION实现列转行;Oracle和SQL Server提供PIVOT/UNPIVOT函数,语法更简洁,SQL Server还支持动态SQL。大数据平台中,Hive利用CONCAT_WS、EXPLODE等函数组合,SparkSQL通过PIVOT/UNPIVOT操作和stack函数实现高效转换。应用场景方面,电商领域用于销售趋势分析和用户行为挖掘,金融领域用于风险评估和投资组合优化。不同平台

2025-08-09 12:06:28 975

原创 Flink Checkpoint机制:大数据流处理的坚固护盾

Flink的Checkpoint机制是其实现容错的核心技术,通过定期保存作业状态快照确保数据一致性和故障恢复。文章详细解析了Checkpoint的工作原理,包括Barrier注入、状态快照、对齐机制等流程,阐述了精确一次和至少一次两种语义的实现差异。同时介绍了Checkpoint的配置参数、优化策略及在电商、金融等实际场景中的应用,为开发者提供了从理论到实践的完整指南。该机制有效解决了大数据流处理中的容错问题,是保障Flink作业稳定运行的关键技术。

2025-08-01 08:38:51 931

原创 Flink窗口:解锁流计算的秘密武器

Flink窗口技术是处理无限数据流的关键工具,通过将数据流划分成有限块进行处理。主要包含五种窗口类型:滚动窗口(固定大小不重叠)、滑动窗口(可重叠)、会话窗口(基于会话间隙)、全局窗口(全量数据)和计数窗口(元素数量)。窗口操作支持KeyedStream和Datastream两种模式,并提供多种窗口函数如ReduceFunction、AggregateFunction等。实际应用中需注意窗口大小设置、数据乱序处理、状态管理等问题,可通过水印机制、触发器优化等方式提升性能。Flink窗口能有效支持实时数据分析

2025-07-27 21:10:05 1239

原创 Python自动化模块:开启高效编程新时代

在数字化时代,自动化技术已成为提高效率、降低成本的关键手段。Python 作为一种简洁、高效且功能强大的编程语言,凭借其丰富的库和框架,在自动化领域占据了举足轻重的地位,成为众多开发者的首选工具之一。从简单的文件操作、数据处理,到复杂的网络爬虫、机器学习任务,Python 都能轻松应对,以优雅的代码实现各种自动化需求。无论是企业级应用,还是个人日常任务,Python 都展现出了无可比拟的优势。接下来,让我们一同探索 Python 那些常用的自动化模块,解锁 Python 自动化的强大力量,开启高效编程之旅。

2025-03-29 21:55:27 1295

原创 解锁PyTorch:深度学习的神兵利器(详细干货版)

在深度学习项目中,PyTorch 的优势尤为明显。以图像分类任务为例,使用 PyTorch 可以快速搭建卷积神经网络模型,通过简洁的代码实现数据加载、模型训练和评估等流程。在自然语言处理任务中,PyTorch 对于循环神经网络(RNN)、长短时记忆网络(LSTM)以及 Transformer 等模型的支持,使得处理文本数据变得更加高效和灵活。同时,PyTorch 的动态计算图特性,允许在运行时修改模型结构和计算流程,为模型的调试和优化提供了极大便利,这是许多其他框架所不具备的优势。

2025-03-23 11:46:34 1158

原创 告别服务器繁忙!手把手教你Deepseek本地部署

在人工智能飞速发展的当下,DeepSeek 以其卓越的性能和广泛的应用场景,迅速成为了 AI 领域的热门话题,深受全球用户的喜爱。自发布以来,DeepSeek 在全球 140 个市场的应用商店中表现出色,一度排名第一,展现出了强大的市场竞争力。尤其是在印度市场,其拉新效果显著,成为了新用户增长的重要引擎。然而,随着用户数量的急剧增加,DeepSeek 服务器时常面临巨大的压力,“服务器繁忙” 的提示频繁出现,严重影响了用户的使用体验。

2025-03-09 21:50:50 1168

原创 Hive函数大揭秘:从基础到实战的进阶之路

在大数据处理的广袤领域中,Hive 凭借其独特的优势占据着举足轻重的地位。它构建于 Hadoop 之上,作为一款卓越的数据仓库工具,能够将结构化的数据文件巧妙地映射为数据库表 ,并赋予用户类 SQL 的查询功能。这使得大数据的分析查询变得更加直观、高效,无需用户深入钻研复杂的 MapReduce 编程模型,就能轻松驾驭海量数据的处理。比如,在面对互联网公司每日产生的数以亿计的用户行为日志时,Hive 可以快速地对这些数据进行存储、查询和分析,帮助企业挖掘出有价值的信息,从而为决策提供有力支持。

2025-03-06 08:48:45 966

原创 深入探秘FlinkCDC:实时数据处理的新利器

FlinkCDC,即 Flink Change Data Capture,是基于 Apache Flink 开发的用于捕获数据源变更数据的工具。

2025-03-04 23:11:19 1593

原创 突破Ajax跨域困境,解锁前端通信新姿势

跨域是指浏览器不能执行其他网站的脚本,当从一个域名的网页去请求另一个域名的资源时,只要协议、域名、端口、子域名中有任何一个不同,就会产生跨域情况。这是浏览器基于同源策略对 JavaScript 施加的安全限制。协议不同:当前页面是,请求的资源在,由于协议分别为http和https,这就构成了跨域。域名不同:当前页面在,而请求的资源在,不同的域名导致跨域。端口不同:当前页面运行在,请求的资源在,端口号的差异使得请求属于跨域。子域名不同:当前页面是,请求的资源在。

2025-03-02 17:56:48 915

原创 Flink 窗口:流处理的核心利器

在 Flink 中,窗口是一种将无界数据流切分为有限的、可管理的数据块的机制。它就像是一个 “数据收集器”,按照一定的规则收集数据流中的元素,当满足特定条件(如达到时间间隔或元素数量)时,对收集到的数据进行处理。窗口的主要作用在于对无界数据流进行分段处理,使得我们能够在流数据上执行基于时间或数据量的聚合、统计等操作。通过窗口,我们可以将连续的数据流按照时间维度(如每小时、每天)或数据量维度(如每 100 条数据)进行分组,从而对每个分组内的数据进行独立的计算和分析。

2025-03-01 20:30:46 1103

原创 Python:开启人工智能大门的万能钥匙

Python 凭借其简洁的语法、丰富的库和强大的社区支持,已成为人工智能领域不可或缺的编程语言。通过本文的介绍,我们详细了解了 Python 在人工智能各领域常用的模块,这些模块犹如搭建人工智能大厦的基石,为我们实现各种复杂的人工智能任务提供了有力的支持。在机器学习领域,Scikit - learn 为传统机器学习算法的实现提供了便捷的工具,使我们能够快速构建和评估模型;

2025-02-28 08:43:19 738

原创 一文吃透数仓拉链表:原理、优势与实战

数仓拉链表,英文名为 Slowly Changing Dimension (SCD) Table ,是数据仓库中用于处理维度表中数据缓慢变化的一种数据存储和管理技术。简单来说,它就像是一个数据的时间记录仪,能够详细地记录下数据从开始到当前状态的所有变化信息。在传统的数据库表中,当数据发生变化时,通常是直接覆盖原有数据,这样虽然操作简单,但会导致历史数据丢失,无法追溯数据的变化过程。

2025-02-26 21:30:08 1207

原创 Spark算子:大数据处理的魔法棒

在大数据处理的广袤宇宙中,Apache Spark 无疑是一颗璀璨的明星。它诞生于加州大学伯克利分校的 AMPLab 实验室,自开源以来,迅速在大数据领域崭露头角,成为了大数据处理框架中的佼佼者。Spark 以其快速、通用、可扩展的特性,改变了大数据处理的格局。与传统的 Hadoop MapReduce 相比,Spark 基于内存计算的模型,大大减少了数据在磁盘上的读写操作,使得数据处理速度得到了质的飞跃。这种基于内存的迭代计算模型,让 Spark 在数据挖掘、机器学习、实时流处理等多个领域都能游刃有余。

2025-02-19 21:18:59 1237

原创 2025最新主流深度学习算法全解析

深度学习算法家族中的每一位成员都以其独特的魅力和强大的功能,在各自的领域中绽放光彩。卷积神经网络凭借其对图像数据的敏锐洞察力,成为图像领域的中流砥柱;循环神经网络及其变体长短期记忆网络,在序列数据的处理中如鱼得水,为自然语言处理和语音识别等任务带来了突破性的进展;生成对抗网络则以其创造性的对抗训练方式,开启了数据生成的新篇章,为艺术创作和虚拟世界的构建提供了无限可能。这些主流深度学习算法不仅在学术研究中取得了丰硕的成果,更在实际应用中展现出巨大的价值。

2025-02-10 22:05:23 6183

原创 解锁大模型算法:一文吃透主流技术

主流大模型算法以 Transformer 架构为基石,衍生出 Encoder - only、Decoder - only 和 Encoder - Decoder 等多种架构,在自然语言处理、计算机视觉等领域取得了显著成就。它们凭借庞大的参数规模、先进的架构设计和海量数据驱动,展现出强大的表示能力、高效的训练策略和出色的泛化能力。然而,大模型算法的发展仍面临诸多挑战,如训练成本高昂、模型可解释性差以及数据质量与隐私保护等问题。

2025-02-10 21:57:34 1336

原创 AI时代,职场人如何开启学习之旅

在当今数字化时代,AI 正以前所未有的速度改变着我们的工作和生活方式。从智能客服到自动化生产,从数据分析到个性化推荐,AI 已经广泛渗透到各个行业和领域。学习 AI,对于工作人员来说,不仅是提升工作效率的关键,更是增强职业竞争力、适应未来职场发展的必然选择。AI 可以显著提升工作效率。以内容创作领域为例,像 ChatGPT 这样的 AI 语言模型,能够快速生成文案初稿,帮助文案撰写人员节省大量构思和起草的时间。通过简单的指令输入,AI 就能在短时间内提供丰富的创意和内容框架,工作人员只需在此基础上进行优化和

2025-02-09 21:15:31 1322

原创 DeepSeek:开启未来应用开发的新大门

DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司 ,是一家专注于开发先进大语言模型(LLM)和相关技术的创新型科技公司,成立于 2023 年 7 月 17 日,由知名量化资管巨头幻方量化创立。在 AI 领域,它凭借独特的技术和出色的性能,迅速崭露头角,成为备受瞩目的焦点。DeepSeek 采用了一系列先进的技术,其中最引人注目的是混合专家模型(MoE)架构。在传统的 Transformer 模型中,前馈网络(FFN)层被 MoE 层所替代。MoE 层包含多个 “专家”,每个专家都是一个独立的神

2025-02-09 21:08:33 1204

原创 大数据与大模型:数字时代的共生力量

大数据,绝非仅仅是大量数据的简单堆砌,它有着独特的定义和鲜明的特征。国际数据公司(IDC)对大数据的定义为:大数据是指那些规模巨大、增长快速、类型多样,且难以用传统数据处理技术和工具进行有效处理的数据集合。Volume(数据量大):随着互联网、物联网、移动设备等的飞速发展,数据量正以惊人的速度增长。从早期的 GB、TB 量级,迅速跃升至 PB、EB 甚至 ZB 量级。

2025-02-09 20:58:36 1574

原创 一文吃透Flink:大数据处理的神兵利器

Flink 是一个开源的分布式流处理框架,由 Apache 软件基金会开发 ,使用 Java 和 Scala 编写。它的核心是一个分布式流数据引擎,能够以数据并行和流水线方式执行任意流数据程序。Flink 的设计目标是提供高吞吐量、低延迟的流数据处理能力,同时支持对有界和无界数据流进行有状态的计算。这里的有界数据流,就像是一个装满数据的固定大小的箱子,数据量是有限的,处理完这些数据任务就结束了,比如我们处理一份固定的历史订单数据报表。

2025-02-09 20:43:19 1290

原创 解锁国内主流前端与后端框架

Flask 是一个轻量级的 Python 后端框架,它的核心设计理念是简洁和灵活。Flask 本身只提供了基本的路由系统和请求处理功能,开发者可以根据项目的实际需求,自由选择和集成各种扩展库,如数据库连接库、表单验证库、缓存库等,从而构建出满足不同需求的应用。这种轻量级和灵活性使得 Flask 在小型项目和快速迭代项目中具有明显的优势。

2025-02-09 20:22:12 2408

原创 Flume和Kafka的区别?

一般用于日志采集,可以定制很多数据源,减少开发量,基本架构是一个。一般用于日志缓存,是一个可持久的分布式消息队列,自带存储,提供。追求的是数据和数据源、数据流向的多样性,适合多个生产者的场景;则从分布式系统中收集数据以将数据存储在集中式数据存储中。模式拉取数据,因此适合多个消费者的场景;的操作(数据没有备份、没有副本);),其中传递的是原 子性的event。可以处理和监视分布式系统中的数据,而。公司研发,适合多个生产者;公司研发,适合多个消费者;追求的是高吞吐,高负载,同一。适合生产和收集数据。

2024-12-24 19:37:59 1032

原创 HDFS与HBase有什么关系?

甚至如果不考虑文件系统的分布式或稳定性等特性的话,完全可以用简单的本地文件系统,甚至内存文件系统来代替。可以很好地解决大规模数据的离线批量处理问题,但是,受限于Hadoop MapReduce。传统的通用关系型数据库无法应对在数据规模剧增时导致的系统扩展性和性能问题。换做其他的分布式文件系统也是一样的,不影响 HBase。提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。查询延迟的系统,例如键值数据库、文档数据库和列族数据库(算法,在文件系统之上有数据库,在业务层面,

2024-12-24 18:15:33 956

原创 Hive SQL和Spark SQL的区别?

但是,对于实时插入、更新、删除数据,还要求强一致性和毫秒级响应,这个就不是Hive的长处,因为MapReduce。的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将。上的数据仓库基础构架。过程串起来,中间过程存在内存中,再做一些优化,官方给出的答案是比Hadoop。每支持一种新的应用开发,都会引入一个新的Context。处理数据是一个个阶段进行的,每个阶段都要落盘,不能多个。的一个数据仓库工具,同时也是查询引擎,基于。应用,十分适合数据仓库的统计分析。

2024-12-24 18:12:49 1354

原创 Spark和MapReduce之间的区别?

这也催生了一个更好的机遇,那就是用一个平台解决所有问题而不是只能根据任务选取不同的平台,毕竟所有的平台都需要学习和维护。集群的内存至少要和需要处理的数据块一样大,因为只有数据块和内存大小合适才能发挥出其最优的性能。的性能标准,在执行相同的任务的时候,需要的硬件更少而运行速度却更快,因此应该是更合算的,尤其是在云端的时候,此时只需要即用即付。提供的简单易用的构造模块,我们可以很容易的编写自定义函数。会在一个工作完成的时候立即结束该进程,因此它可以很容易的和其它服务共同运行而不会产生明显的性能降低。

2024-12-24 18:09:29 1892

原创 Spark和Hadoop之间的区别

它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,同时还会索引和跟踪这些数据,大幅度提升大数据处理和分析效率。Hadoop可以独立完成数据的存储和处理工作,因为其除了。用户可以在不了解分布式底层细节的情况下,开发分布式程序。的要求,可以以流的形式访问(streaming access。的逻辑,把数据进行切片计算用这种方式来处理大量的离线数据。是一个专门用来对那些分布式存储的大数据进行处理的工具,是专为大规模数据处理而设计的快速通用的计算引擎。MapReduce为海量的数据提供了计算。

2024-12-24 18:05:15 861

原创 MySQL和HBase的对比

同时提供高度多样性,能够提供很多不同的使用者介面,包括命令行客户端操作,网页浏览器,以及各式各样的程序语言介面,例如C+线程是轻量级的进程,它可以灵活地为用户提供服务,而不过多的系统资源。(存储计算分离),支持海量数据读写(尤其是写),支持上亿行、上百万列的,面向列的分布式NoSql。因为数据和数据是有关系的,底层是运行了大量的算法,大量算法会降低系统的效率,会降低性能。非关系数据库没有关系,没有强大的事务关系,没有保证数据的完整性和安全性。,主从架构,不支持事务,不支持二级索引,不支持sql。

2024-12-24 14:24:15 1687

分析股票曲线图.sql

分析股票曲线图.sql

2022-11-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除