LMDB的全称是Lightning Memory-Mapped Database(快如闪电的内存映射数据库),它的文件结构简单,包含一个数据文件和一个锁文件:
LMDB文件可以同时由多个进程打开,具有极高的数据存取速度,访问简单,不需要运行单独的数据库管理进程,只要在访问数据的代码里引用LMDB库,访问时给文件路径即可。
让系统访问大量小文件的开销很大,而LMDB使用内存映射的方式访问文件,使得文件内寻址的开销非常小,使用指针运算就能实现。数据库单文件还能减少数据集复制/传输过程的开销。
在python中使用lmdb: linux中,可以使用指令‘pip install lmdb' 安装lmdb包。
1. 生成一个空的lmdb数据库文件
?
1 2 3 4 5 6 7 | # -*- coding: utf-8 -*- import lmdb # 如果train文件夹下没有data.mbd或lock.mdb文件,则会生成一个空的,如果有,不会覆盖 # map_size定义最大储存容量,单位是kb,以下定义1TB容量 env = lmdb. open ( "./train" ,map_size = 1099511627776 ) env.close() |
2. LMDB数据的添加、修改、删除
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # -*- coding: utf-8 -*- import lmdb # map_size定义最大储存容量,单位是kb,以下定义1TB容量 env = lmdb. open ( "./train" , map_size = 1099511627776 ) txn = env.begin(write = True ) # 添加数据和键值 txn.put(key = '1' , value = 'aaa' ) txn.put(key = '2' , value = 'bbb' ) txn.put(key = '3' , value = 'ccc' ) # 通过键值删除数据 txn.delete(key = '1' ) # 修改数据 txn.put(key = '3' , value = 'ddd' ) # 通过commit()函数提交更改 txn.commit() env.close() |
3. 查询lmdb数据库内容
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | # -*- coding: utf-8 -*- import lmdb env = lmdb. open ( "./train" ) # 参数write设置为True才可以写入 txn = env.begin(write = True ) ############################################添加、修改、删除数据 # 添加数据和键值 txn.put(key = '1' , value = 'aaa' ) txn.put(key = '2' , value = 'bbb' ) txn.put(key = '3' , value = 'ccc' ) # 通过键值删除数据 txn.delete(key = '1' ) # 修改数据 txn.put(key = '3' , value = 'ddd' ) # 通过commit()函数提交更改 txn.commit() ############################################查询lmdb数据 txn = env.begin() # get函数通过键值查询数据 print txn.get( str ( 2 )) # 通过cursor()遍历所有数据和键值 for key, value in txn.cursor(): print (key, value) ############################################ env.close() |
4. 读取已有.mdb文件内容
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # -*- coding: utf-8 -*- import lmdb env_db = lmdb.Environment( 'trainC' ) # env_db = lmdb.open("./trainC") txn = env_db.begin() # get函数通过键值查询数据,如果要查询的键值没有对应数据,则输出None print txn.get( str ( 200 )) for key, value in txn.cursor(): #遍历 print (key, value) env_db.close() |