题目描述
给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入描述:
输入一个数n,意义见题面。(2 <= n <= 60)
输出描述:
输出答案。
示例1
输入
8
输出
18
//方法1:dp O(n^2) O(n)
class Solution {
public:
int cutRope(int number) {
if (number <= 3) {
return number - 1;
}
vector<int> dp(number + 1, 0);
dp[1] = 1; dp[2] = 2, dp[3] = 3; // 不再分隔的 base case
for (int i = 4; i <= number; ++i) {
int prod = 0;
for (int j = 1; j <= i / 2; ++j) {
prod = max(prod, dp[j] * dp[i - j]);
}
dp[i] = prod;
}
return dp[number];
}
};
//方法2:数学 and 贪心 O(1) O(1)
class Solution {
public:
int cutRope(int number) {
if(number==2) return 1;
if(number==3) return 2;
//尽可能多的减长度为3的绳子
int countOf3=number/3;
//当绳子最后一段是4的时候,应该简称2*2而不是3*1
if(number-countOf3*3==1) //绳子剩余0、1、2
countOf3--;
//剩下绳子能得到长度为2的段数
int countOf2=(number-countOf3*3)/2;
return (int)pow(3,countOf3)*(int)pow(2,countOf2); //不加(int)也可通过判题系统
}
};